1,370 research outputs found

    The Oxygen Abundance of HE 1327-2326

    Full text link
    From a newly obtained VLT/UVES spectrum we have determined the oxygen abundance of HE 1327-2326, the most iron-poor star known to date. UV-OH lines yield a 1D LTE abundance of [O/Fe]_OH = 3.7 (subgiant case) and [O/Fe]_OH = 3.4 (dwarf case). Using a correction of -1.0 dex to account for 3D effects on OH line formation, the abundances are lowered to [O/Fe] = 2.8 and [O/Fe] = 2.5, respectively, which we adopt. Without 3D corrections, the UV-OH based abundance would be in disagreement with the upper limits derived from the OI triplet lines: [O/Fe]_trip < 2.8 (subgiant) and [O/Fe]_trip < 3.0 (dwarf). We also correct the previously determined carbon and nitrogen abundances for 3D effects. Knowledge of the O abundance of HE 1327-2326 has implications for the interpretation of its abundance pattern. A large O abundance is in accordance with HE 1327-2326 being an early Population II star which formed from material chemically enriched by a first generation supernova. Our derived abundances, however, do not exclude other possibilities such as a Population III scenario.Comment: 13 pages, accepted for publication in ApJ

    A Sr-Rich Star on the Main Sequence of Omega Centauri

    Get PDF
    Abundance ratios relative to iron for carbon, nitrogen, strontium and barium are presented for a metal-rich main sequence star ([Fe/H]=--0.74) in the globular cluster omega Centauri. This star, designated 2015448, shows depleted carbon and solar nitrogen, but more interestingly, shows an enhanced abundance ratio of strontium [Sr/Fe] ~ 1.6 dex, while the barium abundance ratio is [Ba/Fe]<0.6 dex. At this metallicity one usually sees strontium and barium abundance ratios that are roughly equal. Possible formation scenarios of this peculiar object are considered.Comment: 13 pages, 3 figures. Accepted to ApJ

    Halo Star Streams in the Solar Neighborhood

    Full text link
    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample includes red giants, RR Lyrae, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was chosen to include stars with accurate distances, space velocities, and metallicities as well as well-quantified errors. We confirm the existence of the streams found by Helmi and coworkers, which we refer to as the H99 streams. These streams have a double-peaked velocity distribution in the z direction. We use the results of modeling of the H99 streams by Helmi and collaborators to test how one might use v_z velocity information and radial velocity information to detect kinematic substructure in the halo. We find that detecting the H99 streams with radial velocities alone would require a large sample. We use the velocity distribution of the H99 streams to estimate their age. From our model of the progenitor of the H99 streams, we determine that it was accreted between 6 and 9 Gyr ago. The H99 streams have [alpha/Fe] abundances similar to other halo stars in the solar neighborhood, suggesting that the gas that formed these stars were enriched mostly by Type II SNe. We have also discovered in angular momentum space two other possible substructures, which we refer to as the retrograde and prograde outliers. The retrograde outliers are likely to be halo substructure, but the prograde outliers are most likely part of the smooth halo. The retrograde outliers have significant structure in the v_phi direction and show a range of [alpha/Fe]. The methods presented in this paper can be used to exploit the kinematic information present in future large databases like RAVE, SDSSII/SEGUE, and Gaia.Comment: 46 pages, 13 figures, and 9 tables. Minor changes to text to match proofed version of the paper. Low resolution figures. High resolution version at http://www.astro.wisc.edu/~kepley/solar_streams.p

    Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032

    Full text link
    We report high-resolution, high-signal-to-noise, observations of the extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system has a long period : P = 424.7 ±\pm 0.6 days. It comprises two main sequence stars having effective temperatures 6300 K and 5600 K, with a ratio of secondary to primary mass of 0.89 ±\pm 0.04. The metallicity of the system is [Fe/H] = -3.71 ±\pm 0.11 ±\pm 0.12 (random and systematic errors) -- somewhat higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements might have been underproduced relative to Mg in the material from which this object formed. In the context of the hypothesis that the abundance patterns of extremely metal-poor stars are driven by individual enrichment events and the models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent with its having been enriched by a zero-metallicity supernova of mass 30 M_{\odot}. As the most metal-poor near-main-sequence-turnoff star currently known, the primary of the system has the potential to strongly constrain the primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03 ±\pm 0.07, which is consistent with the finding of Ryan et al. (1999) that for stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical Journal, Sept. 1, 2000 issu

    HE 0557-4840 - Ultra-Metal-Poor and Carbon-Rich

    Full text link
    We report the discovery and high-resolution, high S/N, spectroscopic analysis of the ultra-metal-poor red giant HE 0557-4840, which is the third most heavy-element deficient star currently known. Its atmospheric parameters are T_eff = 4900 K, log g = 2.2, and [Fe/H]= -4.75. This brings the number of stars with [Fe/H] < -4.0 to three, and the discovery of HE 0557-4840 suggests that the metallicity distribution function of the Galactic halo does not have a "gap" between [Fe/H] = -4.0, where several stars are known, and the two most metal-poor stars, at [Fe/H] ~ -5.3. HE 0557-4840 is carbon rich - [C/Fe] = +1.6 - a property shared by all three objects with [Fe/H] < -4.0, suggesting that the well-known increase of carbon relative to iron with decreasing [Fe/H] reaches its logical conclusion - ubiquitous carbon richness - at lowest abundance. We also present abundances (nine) and limits (nine) for a further 18 elements. For species having well-measured abundances or strong upper limits, HE 0557-4840 is "normal" in comparison with the bulk of the stellar population at [Fe/H] ~ -4.0 - with the possible exception of Co. We discuss the implications of these results for chemical enrichment at the earliest times, in the context of single ("mixing and fallback") and two-component enrichment models. While neither offers a clear solution, the latter appears closer to the mark. Further data are required to determine the oxygen abundance and improve that of Co, and hence more strongly constrain the origin of this object.Comment: Submitted to Astrophysical Journal. 52 pages (41 text, 11 figures

    Abundances on the Main Sequence of Omega Centauri

    Full text link
    Abundance ratios of carbon, nitrogen and strontium relative to iron, calculated using spectrum synthesis techniques, are given for a sample of main sequence and turnoff stars that belong to the globular cluster omega Centauri. The variations of carbon, nitrogen and/or strontium show several different abundance patterns as a function of [Fe/H]. The source of the enhancements/depletions in carbon, nitrogen and/or strontium may be enrichment from asymptotic giant branch stars of low (1--3 solar masses) and intermediate (3--8 solar masses) mass. Massive rotating stars which produce excess nitrogen without carbon and oxygen overabundances may also play a role. These abundances enable different contributors to be considered and incorporated into the evolutionary picture of omega Cen.Comment: 43 Pages, 13 Figures. Accepted for publication in Ap

    GRB 060313: A New Paradigm for Short-Hard Bursts?

    Get PDF
    We report the simultaneous observations of the prompt emission in the gamma-ray and hard X-ray bands by the Swift-BAT and the KONUS-Wind instruments of the short-hard burst, GRB 060313. The observations reveal multiple peaks in both the gamma-ray and hard X-ray bands suggesting a highly variable outflow from the central explosion. We also describe the early-time observations of the X-ray and UV/Optical afterglows by the Swift XRT and UVOT instruments. The combination of the X-ray and UV/Optical observations provide the most comprehensive lightcurves to date of a short-hard burst at such an early epoch. The afterglows exhibit complex structure with different decay indices and flaring. This behavior can be explained by the combination of a structured jet, radiative loss of energy, and decreasing microphysics parameters occurring in a circum-burst medium with densities varying by a factor of approximately two on a length scale of 10^17 cm. These density variations are normally associated with the environment of a massive star and inhomogeneities in its windy medium. However, the mean density of the observed medium (n approximately 10^&#8722;4 cm^3) is much less than that expected for a massive star. Although the collapse of a massive star as the origin of GRB 060313 is unlikely, the merger of a compact binary also poses problems for explaining the behavior of this burst. Two possible suggestions for explaining this scenario are: some short bursts may arise from a mechanism that does not invoke the conventional compact binary model, or soft late-time central engine activity is producing UV/optical but no X-ray flaring.Comment: 28 pages, 6 figures. Accepted for publication in ApJ. Clarifications made and typos correcte

    High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs

    Get PDF
    Observations suggest that γ\gamma-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, 10\ge 10%, of the fireball energy is expected to be converted by photo-meson production to a burst of 1014eV\sim10^{14} eV neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving τ\tau's would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.Comment: Submitted to PRL (4 pages, LaTeX
    corecore