387 research outputs found

    New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    Get PDF
    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. Many models for spacetime foam are defined by the accumulation power α\alpha, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here α\alpha is defined by theexpression for the path-length fluctuations, δ\delta \ell, of a source at distance \ell, wherein δ1αPα\delta \ell \simeq \ell^{1 - \alpha} \ell_P^{\alpha}, with P\ell_P being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\em Chandra} to set the constraint α0.58\alpha \gtrsim 0.58, which rules out the random walk model (with α=1/2\alpha = 1/2). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {\em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: α0.67\alpha \gtrsim 0.67 and α0.72\alpha \gtrsim 0.72, respectively. These limits on α\alpha seem to rule out α=2/3\alpha = 2/3, the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres

    Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017

    Full text link
    We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence

    Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017

    Get PDF
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ~0.15 microns or larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201

    Juan Valero Center for the Advancement of Population Assessment Methodology

    Get PDF
    A draft assessment of the coastwide petrale sole (Eopsetta jordani) off the U.S. west coast usin

    Discovery of the Transiting Planet Kepler-5B

    Get PDF
    We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3).NASA's Science Mission DirectorateAstronom

    Examining the effects of testwiseness in conceptual physics evaluations

    Get PDF
    Testwiseness is defined as the set of cognitive strategies used by a student that is intended to improve his or her score on a test regardless of the test’s subject matter. Questions with elements that may be affected by testwiseness are common in physics assessments, even in those which have been extensively validated and widely used as evaluation tools in physics education research. The potential effect of several elements of testwiseness were analyzed for questions in the Force Concept Inventory (FCI) and Conceptual Survey on Electricity and Magnetism that contain distractors that are predicted to be influenced by testwiseness. This analysis was performed using data sets collected between fall 2001 and spring 2014 at one midwestern U.S. university (including over 9500 students) and between Spring 2011 and Spring 2015 at a second eastern U.S. university (including over 2500 students). Student avoidance of “none of the above” or “zero” distractors was statistically significant. The effect of the position of a distractor on its likelihood to be selected was also significant. The effects of several potential positive and negative testwiseness effects on student scores were also examined by developing two modified versions of the FCI designed to include additional elements related to testwiseness; testwiseness produced little effect post-instruction in student performance on the modified instruments
    corecore