63 research outputs found
Recommended from our members
XANES, EXAFS and Kβ Spectroscopic Studies of the Oxygen-Evolving Complex in Photosystem II
XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II
A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S{sub 2} {r_arrow} S{sub 3} transition, in contrast to the S{sub 0} {r_arrow} S{sub 1} and S{sub 1} {r_arrow} S{sub 2} transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese {mu}-oxo bridge radical formation during the S{sub 2} {r_arrow} S{sub 3} transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S{sub 0} state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-{mu}-oxo-bridged Mn-Mn moieties increases from 2.7 {angstrom} in the S{sub 1} state to 2.85 {angstrom} in the S{sub 0} state. Furthermore, evidence is presented that shows three di-{mu}-oxo binuclear Mn{sub 2} clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S{sub 0} state have been investigated and a characteristic ''multiline'' signal in the S{sub 0} state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S{sub 0} state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S{sub 0} state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II
Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II †
High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry
The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and 'interatomic' ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy
Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model
Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs
XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II
A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S{sub 2} {r_arrow} S{sub 3} transition, in contrast to the S{sub 0} {r_arrow} S{sub 1} and S{sub 1} {r_arrow} S{sub 2} transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese {mu}-oxo bridge radical formation during the S{sub 2} {r_arrow} S{sub 3} transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S{sub 0} state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-{mu}-oxo-bridged Mn-Mn moieties increases from 2.7 {angstrom} in the S{sub 1} state to 2.85 {angstrom} in the S{sub 0} state. Furthermore, evidence is presented that shows three di-{mu}-oxo binuclear Mn{sub 2} clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S{sub 0} state have been investigated and a characteristic ''multiline'' signal in the S{sub 0} state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S{sub 0} state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S{sub 0} state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II
- …
