398 research outputs found
A New Perspective on a Polynomial Time Knot Polynomial
In this work we consider the Z1(K) polynomial time knot polynomial defined anddescribed by Dror Bar-Natan and Roland van der Veen in their 2018 paper ”A polynomial time knot polynomial”. We first look at some of the basic properties of Z1(K), and develop an invariant of diagrams Ψm(D) related to this polynomial. We use this invariant as a model to prove how Z1(K) acts under the connected sum operation. We then discuss the effect of mirroring the knot on Z1(K), and described a geometric interpretation of some of the building blocks of the invariant. We then use these to develop state sum interpretation of Z1(K). We describe a base set of knots which can be used to build the Z1(K), or rather its normalization ρ1(K), showcasing some of its symmetry properties. Finally, we use this idea to give an explicit expansion of ρ1(K) for the family of T (2, 2p + 1) torus knots in terms of this base set of knot invariants
Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
Mapping and Monitoring of Submerged Aquatic Vegetation in Escambia-Pensacola Bay System, Florida
Recently, the distribution and changes in submerged aquatic vegetation (SAY) in the Escambia-Pensacola Bay System in northeastern Florida were monitored by two techniques. One technique used divers to measure changes in the deepwater margin of beds and provided horizontal growth measurements to the nearest centimeter, the other used a differential global positioning system (DGPS) on a small boat to map the perimeter of SAY beds in shallow water. Current distribution of SAY in Escambia Bay shows that most of the SAY losses that occurred during the 1950s to 1970s have been recovered. In Santa Rosa Sound and Pensacola Bay, SAY showed significant increased growth with horizontal growth rates of some beds averaging more than 50 em over the past year. In Big Lagoon, however, SAY has declined an average of 10 em in horizontal coverage along the deepwater edge. Water quality and photosynthetically active radiation light measurements from the Escambia-Pensacola Bay System suggest that increased light availability was associated with the increased seagrass coverage in Santa Rosa Sound and Pensacola Bay, and elevated nutrient concentrations were associated with the seagrass declines in Big Lagoon
Validity of Photo-oxidative stress markers and stress-related phytohormones as predictive proxies of mortality risk in the perennial herb Plantago lanceolata
Oxidative stress and hormonal regulation are hallmarks of a/biotic stress responses in plants. However, little is known about their linkage with whole-organismal mortality in long-lived species. Here, we examined the validity of photo-oxidative stress markers and stress-related phytohormones as predictive proxies of mortality risk in the perennial herb Plantago lanceolata. Capitalizing on its broad ecological niche, we examined photo-oxidative stress markers (Fv/Fm ratio, contents of chlorophylls, carotenoids, and tocochromanols, and the extent of lipid peroxidation) and stress-related phytohormones (ABA, salicylic acid and jasmonates contents) as proxies of mortality in three populations of sub-tropical and Mediterranean habitats: Virginia (VA, U.S.A.), Catalonia (CAT, Spain), and Queensland (QLD, Australia). Stress markers were measured together with the vital rates of survival, growth, and reproduction on a total of 279 individuals. Stress marker data were collected during the summer and death/survival was monitored after two and four months. Whole-organism mortality was similarly high in both sub-tropical non-native populations (ca. 30 % after a drought in VA and QLD), but lower in the native population (ca. 10 % in CAT). The contents of antioxidants (lutein, zeaxanthin, β-carotene) and the de-epoxidation state of the xanthophyll cycle (DPS) were good proxies of mortality risk in VA and QLD. DPS and all carotenoid contents per unit of chlorophyll were lower four months in advance in dead than in alive plants in VA and QLD, thus suggesting reduced photoprotective capacity increased the mortality risk in non-native populations. We show that whole-organismal mortality in P. lanceolata is associated with a reduced capacity to enhance photoprotection under abiotic stress conditions. The validity of various stress markers as predictive proxies of mortality risk is discussed
Mazed and Confused: A Dataset of Cybersickness, Working Memory, Mental Load, Physical Load, and Attention During a Real Walking Task in VR
Virtual Reality (VR) is quickly establishing itself in various industries, including training, education, medicine, and entertainment, in which users are frequently required to carry out multiple complex cognitive and physical activities. However, the relationship between cognitive activities, physical activities, and familiar feelings of cybersickness is not well understood and thus can be unpredictable for developers. Researchers have previously provided labeled datasets for predicting cybersickness while users are stationary, but there have been few labeled datasets on cybersickness while users are physically walking. Thus, from 39 participants, we collected head orientation, head position, eye tracking, images, physiological readings from external sensors, and the self-reported cybersickness severity, physical load, and mental load in VR. Throughout the data collection, participants navigated mazes via real walking and performed tasks challenging their attention and working memory. To demonstrate the dataset\u27s utility, we conducted a case study of training classifiers in which we achieved 95% accuracy for cybersickness severity classification. The noteworthy performance of the straightforward classifiers makes this dataset ideal for future researchers to develop cybersickness detection and reduction models. To better understand the features that helped with classification, we performed SHAP(SHapley Additive exPlanations) analysis, highlighting the importance of eye tracking and physiological measures for cybersickness prediction while walking. This open dataset can allow future researchers to study the connection between cybersickness and cognitive loads and develop prediction models. This dataset will empower future VR developers to design efficient and effective Virtual Environments by improving cognitive load management and minimizing cybersickness
Circulating forms of parathyroid hormone detected with an immunofluorometric assay in patients with primary hyperparathyroidism and in hyperparathyroidism secondary to chronic renal failure
- …
