628 research outputs found
Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly
Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings
Recommended from our members
Dynamical control of the mesosphere by orographic and non-orographic gravity wave drag during the extended northern winters of 2006 and 2009
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures
Recommended from our members
Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere
A version of the Canadian Middle Atmosphere Model that is coupled to an ocean is used to investigate the separate effects of climate change and ozone depletion on the dynamics of the Southern Hemisphere (SH) stratosphere. This is achieved by performing three sets of simulations extending from 1960 to 2099:
1) greenhouse gases (GHGs) fixed at 1960 levels and ozone depleting substances (ODSs) varying in time,
2) ODSs fixed at 1960 levels and GHGs varying in time, and 3) both GHGs and ODSs varying in time. The response of various dynamical quantities to theGHGand ODS forcings is shown to be additive; that is, trends computed from the sum of the first two simulations are equal to trends from the third. Additivity is shown to hold for the zonal mean zonal wind and temperature, the mass flux into and out of the stratosphere, and the latitudinally averaged wave drag in SH spring and summer, as well as for final warming dates. Ozone depletion and recovery causes seasonal changes in lower-stratosphere mass flux, with reduced polar downwelling in the past followed by increased downwelling in the future in SH spring, and the reverse in SH summer. These seasonal changes are attributed to changes in wave drag caused by ozone-induced changes in the zonal mean zonal winds. Climate change, on the other hand, causes a steady decrease in wave drag during SH spring, which delays the breakdown of the vortex, resulting in increased wave drag in summe
Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data
The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space
Recommended from our members
National Standards for Diabetes Self-Management Education
Diabetes self-management education (DSME) is a critical element of care for all people with diabetes and is necessary in order to improve patient outcomes. The National Standards for DSME are designed to define quality diabetes self-management education and to assist diabetes educators in a variety of settings to provide evidence-based education. Because of the dynamic nature of health care and diabetes-related research, these Standards are reviewed and revised approximately every 5 years by key organizations and federal agencies within the diabetes education community. A Task Force was jointly convened by the American Association of Diabetes Educators and the American Diabetes Association in the summer of 2006. Additional organizations that were represented included the American Dietetic Association, the Veteran's Health Administration, the Centers for Disease Control and Prevention, the Indian Health Service, and the American Pharmaceutical Association. Members of the Task Force included a person with diabetes; several health services researchers/behaviorists, registered nurses, and registered dietitians; and a pharmacist. The Task Force was charged with reviewing the current DSME standards for their appropriateness, relevance, and scientific basis. The Standards were then reviewed and revised based on the available evidence and expert consensus. The committee convened on 31 March 2006 and 9 September 2006, and the Standards were approved 25 March 2007
Haemodynamics Regulate Fibronectin Assembly via PECAM
Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAM−/− mice exhibited reduced levels of active β1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling
Proteostasis and resilience in the mechanically-stressed vascular endothelium
Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation
The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy
Pancreatic ductal adenocarcinoma (PDAC) has a five‐year survival rate of <4% and desperately needs novel effective therapeutics. Integrin αvβ6 has been linked with poor prognosis in cancer but its potential as a target in PDAC remains unclear. We report that transcriptional expression analysis revealed high levels of β6 mRNA correlated strongly with significantly poorer survival (n=491 cases, p= 3.17x10‐8). In two separate cohorts we showed that over 80% of PDAC expressed αvβ6 protein and that paired metastases retained αvβ6 expression. In vitro, integrin αvβ6 promoted PDAC cell growth, survival, migration and invasion. Treatment of both αvβ6‐positive human PDAC xenografts and transgenic mice bearing αvβ6‐positive PDAC with the αvβ6 blocking antibody 264RAD, combined with gemcitabine, significantly reduced tumour growth (p<0.0001) and increased survival (Log‐rank test, p<0.05). Antibody therapy was associated with suppression of both tumour cell activity (suppression of pErk growth signals, increased apoptosis seen as activated Caspase 3) and suppression of the pro‐tumourigenic microenvironment (suppression of TGFβ signalling, fewer αSMA‐positive myofibroblasts, decreased blood vessel density). These data show that αvβ6 promotes PDAC growth through both tumour cell and tumour microenvironment mechanisms and represents a valuable target for PDAC therapy
- …
