135 research outputs found
Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer
Review of the articleMitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically
Classical Scrapie Did Not Re-occur in Goats After Cleaning and Disinfection of the Farm Premises
After an outbreak of classical scrapie in a dairy goat herd with over 1,800 goats, all goats in the herd were culled in 2008, cleaning and disinfection of the premises was implemented, and restocking with goats took place ~4 months after depopulation. Ten years later the new herd population is over 3,000 goats. This study was carried out to determine whether the measures were effective to prevent re-occurrence of scrapie to the 1% prevalence level seen when scrapie was first detected on this farm. A total of 280 goats with a minimum age of 18 months, which were predominantly at the end of their productive life, were euthanized, and brain and retropharyngeal lymph node examined by immunohistochemistry for disease-associated prion protein. Genotyping was done in all euthanized goats and live male goats used or intended for breeding to determine prion protein gene polymorphisms associated with resistance to classical scrapie. None of the goats presented with disease-associated prion protein in the examined tissues, and 34 (12.2%) carried the K222 allele associated with resistance. This allele was also found in four breeding male goats. The study results suggested that classical scrapie was not re-introduced on this goat farm through mass restocking or inadequate cleaning and disinfection procedures. Further scrapie surveillance of goats on this farm is desirable to confirm absence of disease. Breeding with male goats carrying the K222 allele should be encouraged to increase the scrapie-resistant population
Incubation of ovine scrapie with environmental matrix results in biological and biochemical changes of PrPSc over time
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrPSc phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrPSc phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrPSc deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrPSc biological/biochemical properties
Experimental transmission of atypical scrapie to sheep
<p>Abstract</p> <p>Background</p> <p>Active surveillance for transmissible spongiform encephalopathies in small ruminants has been an EU regulatory requirement since 2002. A number of European countries have subsequently reported cases of atypical scrapie, similar to previously published cases from Norway, which have pathological and molecular features distinct from classical scrapie. Most cases have occurred singly in flocks, associated with genotypes considered to be more resistant to classical disease. Experimental transmissibility of such isolates has been reported in certain ovinised transgenic mice, but has not previously been reported in the natural host. Information on the transmissibility of this agent is vital to ensuring that disease control measures are effective and proportionate.</p> <p>Results</p> <p>This report presents the successful experimental transmission, in 378 days, of atypical scrapie to a recipient sheep of homologous genotype with preservation of the pathological and molecular characteristics of the donor. This isolate also transmitted to ovinised transgenic mice (Tg338) with a murine phenotype indistinguishable from that of Nor 98.</p> <p>Conclusion</p> <p>This result strengthens the opinion that these cases result from a distinct strain of scrapie agent, which is potentially transmissible in the natural host under field conditions.</p
Classical Scrapie Did Not Re-occur in Goats After Cleaning and Disinfection of the Farm Premises
After an outbreak of classical scrapie in a dairy goat herd with over 1,800 goats, all goats in the herd were culled in 2008, cleaning and disinfection of the premises was implemented, and restocking with goats took place ~4 months after depopulation. Ten years later the new herd population is over 3,000 goats. This study was carried out to determine whether the measures were effective to prevent re-occurrence of scrapie to the 1% prevalence level seen when scrapie was first detected on this farm. A total of 280 goats with a minimum age of 18 months, which were predominantly at the end of their productive life, were euthanized, and brain and retropharyngeal lymph node examined by immunohistochemistry for disease-associated prion protein. Genotyping was done in all euthanized goats and live male goats used or intended for breeding to determine prion protein gene polymorphisms associated with resistance to classical scrapie. None of the goats presented with disease-associated prion protein in the examined tissues, and 34 (12.2%) carried the K222 allele associated with resistance. This allele was also found in four breeding male goats. The study results suggested that classical scrapie was not re-introduced on this goat farm through mass restocking or inadequate cleaning and disinfection procedures. Further scrapie surveillance of goats on this farm is desirable to confirm absence of disease. Breeding with male goats carrying the K222 allele should be encouraged to increase the scrapie-resistant population
Assessing the aggregated probability of entry of a novel prion disease agent into the United Kingdom
In 2018 prion disease was detected in camels at an abattoir in Algeria for the first time. The emergence of prion disease in this species made it prudent to assess the probability of entry of the pathogen into the United Kingdom (UK) from this region. Potentially contaminated products were identified as evidenced by other prion diseases. The aggregated probability of entry of the pathogen was estimated as very high and high for legal milk and cheese imports respectively and very high, high and high for illegal meat, milk and cheese products respectively. This aggregated probability represents a qualitative assessment of the probability of one or more entry events per year into the UK; it gives no indication of the number of entry events per year. The uncertainty associated with these estimates was high due to the unknown variation in prevalence of infection in camels and an uncertain number and type of illegal products entering the UK. Potential public health implications of this pathogen are unknown although there is currently no evidence of zoonotic transmission of prion diseases other than bovine spongiform encephalopathy to humans
Ability of wild type mouse bioassay to detect bovine spongiform encephalopathy (BSE) in the presence of excess scrapie
INTRODUCTION: Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSEs) which naturally affect small and large ruminants respectively. However, small ruminants, which are susceptible to BSE under experimental conditions, have been exposed to the same or similar contaminated food additives as cattle. To date two natural cases of BSE in small ruminants have been reported. As a result surveillance projects, combined with appropriate control measures, have been established throughout the European Union (EU) to minimize the overall incidence of small ruminant TSEs. Although BSE can be differentiated from classical scrapie (subsequently referred to as scrapie) if appropriate discriminatory tests are applied, the value of these tests in BSE/scrapie co-infection scenarios has not been evaluated fully. Mouse bioassay is regarded as the gold standard regarding differentiation of distinct TSE strains and has been used as to resolve TSE cases were laboratory tests produced equivocal results. However, the ability of this method to discriminate TSE strains when they co-exist has not been examined systematically. To address this issue we prepared in vitro mixtures of ovine BSE and scrapie and used them to challenge RIII, C57BL/6 and VM mice. RESULTS: Disease phenotype analysis in all three mouse lines indicated that most phenotypic parameters (attack rates, incubation periods, lesion profiles and Western blots) were compatible with scrapie phenotypes as were immunohistochemistry (IHC) data from RIII and C57BL/6 mice. However, in VM mice that were challenged with BSE/scrapie mixtures a single BSE-associated IHC feature was identified, indicating the existence of BSE in animals where the scrapie phenotype was dominant. CONCLUSIONS: We conclude that wild type mouse bioassay is of limited value in detecting BSE in the presence of scrapie particularly if the latter is in relative excess. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-015-0194-2) contains supplementary material, which is available to authorized users
Estimating the impact on food and edible materials of changing scrapie control measures : the scrapie control model
Multiple controls established during the bovine spongiform encephalopathy (BSE) epidemic were not solely applied to BSE in cattle, but were implemented for scrapie in sheep and goats due to concerns over the occurrence of BSE in sheep. In the absence of BSE in sheep being observed, control measures for prion diseases are now being evaluated to ensure they remain proportionate to risk. This risk assessment, aims to estimate, by use of stochastic simulation, the impact of reducing controls for Specified Risk Materials (SRM) from sheep at abattoir. Three scenarios have been included: 1) current list of SRM; 2) brain and spinal cord of adult sheep; and 3) the brain of adult sheep. Results indicate the total amount of infectivity passing through British abattoirs is highest for atypical scrapie with nearly 3,500,000 Ovine Oral (OO) ID50 per year. The majority of this infectivity enters Category 1 waste for incineration, with only 13,000 OO ID50 per year within edible products. Under Scenario 2, an additional 4,000 OO ID50 per year would be classified as edible products from the lifting of restrictions on the distal ileum of adult sheep. However, if SRM removal was limited to brain, an additional 110,000 OO ID50 per year would be permitted into edible products with the lifting of restrictions on the spinal cord of adult sheep. For classical scrapie, there is a mean estimate of infectivity of 30,000 OO ID50 per year at abattoir. This is lower than for atypical scrapie due to the lower occurrence of this disease in Britain. However, more infectivity is destined to reach the food chain as the disease is peripherally distributed in the carcase. The highest contributor to the total amount of infectivity consumed per year is the intestines (duodenum and jejunum). If SRM removal is limited to the brain and spinal cord of sheep over 12 months of age, there is an approximate mean increase from 19,000 to 21,000 OO ID50 per year diverted to edible products. If the SRM list is restricted to brain only, this increases to over 23,000 OO ID50 per year. For the potential of sheep-BSE, there is a very low estimate of 29 OO ID50 per year in total from carcases entering abattoir, due to the potential very rare occurrence of this disease. Given changes in SRM regulations there is a change of an additional 4 OO ID50 per year being diverted to edible products
Different prion disease phenotypes result from inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain
BACKGROUND: Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods. RESULTS: Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group. CONCLUSION: The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice
- …
