2,047 research outputs found
The Loop Current as a vector for connectivity of invasive species from the western Atlantic to the Gulf of Mexico.
Increasing optical metamaterials functionality
Gold Split Ring Resonators (SRRs) were fabricated on silicon substrates by electron beam lithography and lift-off, with overall dimensions of approximately 200 nm. Reflectance spectra from the SRRs are similar to those published elsewhere. New devices are proposed based on the additional functionality afforded by the use of a silicon substrate
On the Summation of Feynman Graphs
A functional method to achieve the summation of all Feynman graphs relevant
to a particular Field Theory process is suggested, and applied to QED,
demonstrating manifestly gauge invariant calculations of the dressed photon
propagator in approximations of increas- ing complexity. These lead in a
natural way to the extraction of the leading logarithmic divergences of every
perturbative order, and to a demonstration of the possible cancellation of all
such divergences in the calculation of the (inverse of the) photon's
wavefunction renormalization constant Z3. This analysis provides a qualitative
understanding of why the measured value of the renormalized fine structure
constant is, approximately, 1/137
A New Approach to Analytic, Non-Perturbative and Gauge-Invariant QCD
Following a previous calculation of quark scattering in eikonal
approximation, this paper presents a new, analytic and rigorous approach to the
calculation of QCD phenomena. In this formulation a basic distinction between
the conventional "idealistic" description of QCD and a more "realistic"
description is brought into focus by a non-perturbative, gauge-invariant
evaluation of the Schwinger solution for the QCD generating functional in terms
of the exact Fradkin representations of the Green's functional and the vacuum
functional. Because quarks exist asymptotically only in bound states, their
transverse coordinates can never be measured with arbitrary precision; the
non-perturbative neglect of this statement leads to obstructions that are
easily corrected by invoking in the basic Lagrangian a probability amplitude
which describes such transverse imprecision.
The second result of this non-perturbative analysis is the appearance of a
new and simplifying output called "Effective Locality", in which the
interactions between quarks by the exchange of a "gluon bundle" - which
"bundle" contains an infinite number of gluons, including cubic and quartic
gluon interactions - display an exact locality property that reduces the
several functional integrals of the formulation down to a set of ordinary
integrals. It should be emphasized that "non-perturbative" here refers to the
effective summation of all gluons between a pair of quark lines, but does not
(yet) include a summation over all closed-quark loops which are tied by
gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the
power of these methods we offer as a first analytic calculation the
quark-antiquark binding potential of a pion, and the corresponding three-quark
binding potential of a nucleon, obtained in a simple way from relevant eikonal
scattering approximations.Comment: 38 pages, 3 figures in REVTeX. Collections of follow-on work of Eur.
Phys. J. C65, pp. 395-411 (2010). arXiv admin note: text overlap with
arXiv:1103.4179, arXiv:1104.4663, arXiv:1003.293
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Even though approximated, strong coupling non-perturbative QCD amplitudes
remain very difficult to obtain. In this article, in eikonal and quenched
approximations, physical insights are presented that rely on the
newly-discovered property of Effective Locality.Comment: Revised version (28 pages and 1 figure in REVTeX). Follow-up work of
Eur. Phys. J. C65, pp. 395-411 (2010), (arXiv:1204.2038 [hep-ph]), and Ann.
Phys. 327, pp. 2666-2690 (2012), (arXiv:1203.6137 [hep-ph]
The Influence of the Degree of Heterogeneity on the Elastic Properties of Random Sphere Packings
The macroscopic mechanical properties of colloidal particle gels strongly
depend on the local arrangement of the powder particles. Experiments have shown
that more heterogeneous microstructures exhibit up to one order of magnitude
higher elastic properties than their more homogeneous counterparts at equal
volume fraction. In this paper, packings of spherical particles are used as
model structures to computationally investigate the elastic properties of
coagulated particle gels as a function of their degree of heterogeneity. The
discrete element model comprises a linear elastic contact law, particle bonding
and damping. The simulation parameters were calibrated using a homogeneous and
a heterogeneous microstructure originating from earlier Brownian dynamics
simulations. A systematic study of the elastic properties as a function of the
degree of heterogeneity was performed using two sets of microstructures
obtained from Brownian dynamics simulation and from the void expansion method.
Both sets cover a broad and to a large extent overlapping range of degrees of
heterogeneity. The simulations have shown that the elastic properties as a
function of the degree of heterogeneity are independent of the structure
generation algorithm and that the relation between the shear modulus and the
degree of heterogeneity can be well described by a power law. This suggests the
presence of a critical degree of heterogeneity and, therefore, a phase
transition between a phase with finite and one with zero elastic properties.Comment: 8 pages, 6 figures; Granular Matter (published online: 11. February
2012
Invasive Allele Spread under Preemptive Competition
We study a discrete spatial model for invasive allele spread in which two
alleles compete preemptively, initially only the "residents" (weaker
competitors) being present. We find that the spread of the advantageous
mutation is well described by homogeneous nucleation; in particular, in large
systems the time-dependent global density of the resident allele is well
approximated by Avrami's law.Comment: Computer Simulation Studies in Condensed Matter Physics XVIII, edited
by D.P. Landau, S.P. Lewis, and H.-B. Schuttler, (Springer, Heidelberg,
Berlin, in press
Exact Path-Integral Representations for the -Matrix in Nonrelativistic Potential Scattering
Several path integral representations for the -matrix in nonrelativistic
potential scattering are given which produce the complete Born series when
expanded to all orders and the eikonal approximation if the quantum
fluctuations are suppressed. They are obtained with the help of "phantom"
degrees of freedom which take away explicit phases that diverge for asymptotic
times. Energy conservation is enforced by imposing a Faddeev-Popov-like
constraint in the velocity path integral. An attempt is made to evaluate
stochastically the real-time path integral for potential scattering and
generalizations to relativistic scattering are discussed.Comment: 6 pages, 2 figures. Contribution to the workshop "Relativistic
Description of Two- and Three-Body Systems in Nuclear Physics", ETC*, October
19-23, 2009. v2: typo corrected, matches published version + additional
reference
Women, men and coronary heart disease: a review of the qualitative literature
Aim. This paper presents a review of the qualitative literature which examines the experiences of patients with coronary heart disease. The paper also assesses whether the experiences of both female and male patients are reflected in the literature and summarizes key themes.
Background. Understanding patients' experiences of their illness is important for coronary heart disease prevention and education. Qualitative methods are particularly suited to eliciting patients' detailed understandings and perceptions of illness. As much previous research has been 'gender neutral', this review pays particular attention to gender.
Methods. Published papers from 60 qualitative studies were identified for the review through searches in MEDLINE, EMBASE, CINAHL, PREMEDLINE, PsychINFO, Social Sciences Citation Index and Web of Science using keywords related to coronary heart disease.
Findings. Early qualitative studies of patients with coronary heart disease were conducted almost exclusively with men, and tended to generalize from 'male' experience to 'human' experience. By the late 1990s this pattern had changed, with the majority of studies including women and many being conducted with solely female samples. However, many studies that include both male and female coronary heart disease patients still do not have a specific gender focus. Key themes in the literature include interpreting symptoms and seeking help, belief about coronary 'candidates' and relationships with health professionals. The influence of social roles is important: many female patients have difficulties reconciling family responsibilities and medical advice, while male patients worry about being absent from work.
Conclusions. There is a need for studies that compare the experiences of men and women. There is also an urgent need for work that takes masculinity and gender roles into account when exploring the experiences of men with coronary heart disease
High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity
Planet formation studies are often focused on solar-type stars, implicitly
considering our Sun as reference point. This approach overlooks, however, that
Herbig Ae/Be stars are in some sense much better targets to study planet
formation processes empirically, with their disks generally being larger,
brighter and simply easier to observe across a large wavelength range. In
addition, massive gas giant planets have been found on wide orbits around early
type stars, triggering the question if these objects did indeed form there and,
if so, by what process. In the following I briefly review what we currently
know about the occurrence rate of planets around intermediate mass stars,
before discussing recent results from Herbig Ae/Be stars in the context of
planet formation. The main emphasis is put on spatially resolved polarized
light images of potentially planet forming disks and how these images - in
combination with other data - can be used to empirically constrain (parts of)
the planet formation process. Of particular interest are two objects, HD100546
and HD169142, where, in addition to intriguing morphological structures in the
disks, direct observational evidence for (very) young planets has been
reported. I conclude with an outlook, what further progress we can expect in
the very near future with the next generation of high-contrast imagers at 8-m
class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in
special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables
and reference
- …
