11,326 research outputs found

    Characterization of iodine particles with Volatilization-Humidification Tandem Differential Mobility Analyser (VH-TDMA), Raman and SEM techniques

    Get PDF
    Particles formed upon photo-oxidation of CH2I2 and particles of I2O5 and HIO3 have been studied using a Volatilisation and Humidification Tandem Differential Mobility Analyser (VH-TDMA) system. Volatilization and hygroscopic behaviour have been investigated as function of temperature (from 25 to 400 degrees Celsius), humidity (RH from 80 to 98%), initial aerosol sizes (from 27 to 100 nm mobility diameter) and in nitrogen or air as the sheath gasses. The volatility behaviour of particles formed upon photo-oxidation of CH2I2 is more similar to that of HIO3 particles in a filtered sheath air than in nitrogen, with the particle shrinkage occurring at 190 degrees Celsius and accompanied by hygroscopic growth. Despite its high solubility, HIO3 was found not to be hygroscopic at room temperature with no significant growth displayed until the thermodenuder temperature reached 200 degrees Celsius or above when the particles have transformed into I2O5. Diiodopentaoxide (I2O5) particles exhibit relatively low hygroscopic growth factors of 1.2-2 in the humidity range investigated. Scanning Electron Microscopy (SEM) of particles formed upon photo-oxidation of CH2I2 shows that their primary elemental components were iodine and oxygen in a stoichiometric ratio of approximately 1:2 with 10% error. Both Raman spectra and SEM show poor crystallinity for all the aerosols produced

    A One-Hole Cu\u3csub\u3e4\u3c/sub\u3eS Cluster with N\u3csub\u3e2\u3c/sub\u3eO Reductase Activity: A Structural and Functional Model for Cu\u3csub\u3eZ\u3c/sub\u3e

    Get PDF
    During bacterial denitrification, two-electron reduction of N2O occurs at a [Cu4(μ4-S)] catalytic site (CuZ*) embedded within the nitrous oxide reductase (N2OR) enzyme. In this Communication, an amidinate-supported [Cu4(μ4-S)] model cluster in its one-hole (S = 1/2) redox state is thoroughly characterized. Along with its two-hole redox partner and fully reduced clusters reported previously, the new species completes the two-electron redox series of [Cu4(μ4-S)] model complexes with catalytically relevant oxidation states for the first time. More importantly, N2O is reduced by the one-hole cluster to produce N2 and the two-hole cluster, thereby completing a closed cycle for N2O reduction. Not only is the title complex thus the best structural model for CuZ* to date, but it also serves as a functional CuZ* mimic

    Best chirplet chain: near-optimal detection of gravitational wave chirps

    Full text link
    The list of putative sources of gravitational waves possibly detected by the ongoing worldwide network of large scale interferometers has been continuously growing in the last years. For some of them, the detection is made difficult by the lack of a complete information about the expected signal. We concentrate on the case where the expected GW is a quasi-periodic frequency modulated signal i.e., a chirp. In this article, we address the question of detecting an a priori unknown GW chirp. We introduce a general chirp model and claim that it includes all physically realistic GW chirps. We produce a finite grid of template waveforms which samples the resulting set of possible chirps. If we follow the classical approach (used for the detection of inspiralling binary chirps, for instance), we would build a bank of quadrature matched filters comparing the data to each of the templates of this grid. The detection would then be achieved by thresholding the output, the maximum giving the individual which best fits the data. In the present case, this exhaustive search is not tractable because of the very large number of templates in the grid. We show that the exhaustive search can be reformulated (using approximations) as a pattern search in the time-frequency plane. This motivates an approximate but feasible alternative solution which is clearly linked to the optimal one. [abridged version of the abstract]Comment: 23 pages, 9 figures. Accepted for publication in Phys. Rev D Some typos corrected and changes made according to referee's comment

    On the Neutrality of Flowshop Scheduling Fitness Landscapes

    Get PDF
    Solving efficiently complex problems using metaheuristics, and in particular local searches, requires incorporating knowledge about the problem to solve. In this paper, the permutation flowshop problem is studied. It is well known that in such problems, several solutions may have the same fitness value. As this neutrality property is an important one, it should be taken into account during the design of optimization methods. Then in the context of the permutation flowshop, a deep landscape analysis focused on the neutrality property is driven and propositions on the way to use this neutrality to guide efficiently the search are given.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Trapping of Projectiles in Fixed Scatterer Calculations

    Full text link
    We study multiple scattering off nuclei in the closure approximation. Instead of reducing the dynamics to one particle potential scattering, the scattering amplitude for fixed target configurations is averaged over the target groundstate density via stochastic integration. At low energies a strong coupling limit is found which can not be obtained in a first order optical potential approximation. As its physical explanation, we propose it to be caused by trapping of the projectile. We analyse this phenomenon in mean field and random potential approximations. (PACS: 24.10.-i)Comment: 15 page

    The effects of inspiratory muscle training in older adults

    Get PDF
    Purpose: Declining inspiratory muscle function and structure and systemic low-level inflammation and oxidative stress may contribute to morbidity and mortality during normal ageing. Therefore, we examined the effects of inspiratory muscle training (IMT) in older adults on inspiratory muscle function and structure and systemic inflammation and oxidative stress, and re-examined the reported positive effects of IMT on respiratory muscle strength, inspiratory muscle endurance, spirometry, exercise performance, physical activity levels (PAL) and quality of life (QoL). Methods: Thirty-four healthy older adults (68 ± 3 years) with normal spirometry, respiratory muscle strength and physical fitness were divided equally into a pressure-threshold IMT or sham-hypoxic placebo group. Before and after an 8 week intervention, measurements were taken for dynamic inspiratory muscle function and inspiratory muscle endurance using a weighted plunger pressure-threshold loading device, diaphragm thickness using B-mode ultrasonography, plasma cytokine concentrations using immunoassays, DNA damage levels in peripheral blood mononuclear cells (PBMC) using Comet Assays, spirometry, maximal mouth pressures, exercise performance using a six minute walk test, PAL using a questionnaire and accelerometry, and QoL using a questionnaire

    Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation

    Get PDF
    The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest. There was a main effect of time (P < 0.01) for plasma interleukin-1 (IL-1) and interleukin-6 (IL-6) concentrations and a strong trend (P = 0.067) for plasma interleukin-1 receptor antagonist concentration during MSVV. Plasma IL-6 concentration was reduced after IMT by 27 + 18% (main effect of intervention, P = 0.029), whereas there was no change after PLA (P = 0.753). There was no increase in a systemic marker of oxidative stress [DNA damage in peripheral blood mononuclear cells (PBMC)], and diaphragm fatigue was not related to the increases in plasma IL-1 and IL-6 concentrations. A dose-response relationship was observed between respiratory muscle work and minute ventilation and increases in plasma IL-6 concentration. In conclusion, increases in plasma IL-1 and IL-6 concentrations during MSVV were not due to diaphragm fatigue or DNA damage in PBMC. Increases in plasma IL-6 concentration during MSVV are attenuated following IMT, and the plasma IL-6 response is dependent upon the level of respiratory muscle work and minute ventilation

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review
    corecore