38 research outputs found

    Surface-sampled simulations of turbulent flow at high Reynolds number

    Full text link
    A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large-scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ_\tau=4200 and 20,000. The total grid node count for the first case is less than half a million and less than two million for the second case, with the calculations only requiring a desktop computer. A good agreement with published DNS is found at Reτ_\tau=4200, both in terms of the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near-wall turbulence levels due to a modulation of near-wall streaks by large-scale structures. The trend continues at Reτ_\tau=20,000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES-QDNS coupling strategy and sub-grid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.Comment: Author accepted version. Accepted for publication in the International Journal for Numerical Methods in Fluids on 26 April 201

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin

    No full text
    Results at Ekman Reynolds numbers Re ranging from 1000 to 2828 expand the DNS contribution to the theory of wall-bounded turbulence. An established spectral method is used, with rules for domain size and grid resolution at each Reynolds number derived from the theory. The Re increase is made possible by better computers and by optimizing the grid in relation to the wall shear-stress direction. The boundary-layer thickness in wall units ?+ varies here by a factor of about 5.3, and reaches values near 5,000, or 22 times the minimum at which turbulence has been sustained. An equivalent channel Reynolds number, based on the pressure gradient in wall units, would reach about Re? = 1250. The principal goal of the analysis, the impartial identification of a log law, is summarized in the local ‘Karman Measure’ d(ln z+)/dU+. The outcome differs from that for Hoyas & Jim´enez and for Hu, Morfey & Sandham in channel-flow DNS at similar Reynolds numbers, for reasons unknown: here, the law of the wall is gradually established up to a z+ around 400, with little statistical scatter. To leading order, it is consistent with the experiments of ¨Osterlund et al. in boundary layers. With the traditional expression, a logarithmic law is not present, in that the Karman Measure drifts from about 0.41 at z+ ? 70 to the 0.37-0.38 range for z+ ? 500, with Re = 2828. However, if a virtual origin is introduced with a shift of a+ = 7.5 wall units, the data support a long logarithmic layer with ? = 0.38 a good fit to d(ln[z++a+])/dU+. A determination of the Karman constant from the variation of the skin-friction coefficients with Reynolds numbers also yields values near 0.38. The uncertainty is about ±0.01. These values are close to the boundary-layer experiments, but well below the accepted range of [0.40,0.41] and the experimental pipe-flow results near 0.42. The virtual-origin concept is also controversial, although non-essential at transportation or atmospheric Reynolds numbers. Yet, this series may reflect some success in verifying the law of the wall and investigating the logarithmic law by DNS, redundantly and with tools more impartial than the visual fit of a straight line to a velocity profile

    The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation

    No full text
    Wall-bounded turbulence in pressure gradients is studied using direct numerical simulation (DNS) of a Couette–Poiseuille flow. The motivation is to include adverse pressure gradients, to complement the favourable ones present in the well-studied Poiseuille flow, and the central question is how the scaling laws react to a gradient in the total shear stress or equivalently to a pressure gradient. In the case considered here, the ratio of local stress to wall stress, namely ?+, ranges from roughly 2/3 to 3/2 in the ‘wall region’. By this we mean the layer believed not to be influenced by the opposite wall and therefore open to simple, universal behaviour. The normalized pressure gradients p+ ? d\tau+/dy+ at the two walls are ?0.00057 and +0.0037. The outcome is in broad agreement with the findings of Galbraith, Sjolander & Head (Aeronaut. Quart. vol. 27, 1977, pp. 229–242) relating to boundary layers (based on measured profiles): the logarithmic velocity profile is much more resilient than two other, equally plausible assumptions, namely universality of the mixing length \ell=\?appa y and that of the eddy viscosity \nu_t =u_\tau \kappa y. In pressure gradients, with \tau+ \not= 1, these three come into conflict, and our primary purpose is to compare them. We consider that the K´arm´an constant \kappa is unique but allow a range from 0.38 to 0.41, consistent with the current debates. It makes a minor difference in the interpretation. This finding of resilience appears new as a DNS result and is free of the experimental uncertainty over skin friction. It is not as distinct in the (rather strong) adverse gradient as it is in the favourable one; for instance the velocity U+ at y+ =50 is lower by 3% on the adverse gradient side. A plausible cause is that the wall shear stress is small and somewhat overwhelmed by the stress and kinetic energy in the bulk of the flow. The potential of a correction to the ‘law of the wall’ based purely on p+ is examined, with mixed results. We view the preference for the log law as somewhat counter-intuitive in that the scaling law is non-local but also as becoming established and as highly relevant to turbulence modelling

    Numerical Simulation of Stably Stratified Flow Over Hills.

    No full text
    The aim of the work described in this thesis is the development and application of a method to simulate computationally flows such as those investigated by Castro and Snyder [17], specifically flow over three-dimensional hills at high Reynolds and moderate to low obstacle Froude number. For hills elongated in the span wise direction, this flow regime is characterized by breaking lee waves and accelerated flow near the lower surface downstream of the obstacle. Simulations were performed by discretizing the three-dimensional Reynolds-averaged Navier-Stokes equations, and solving these numerically by a finite volume method. Buoyancy was modelled using the Boussinesq approximation, and modified k-e models employed for turbulence closure. The results obtained are found to be in reasonably good agreement with experimental flow visualizations. Critical Froude numbers for wave breaking are also found to be in reasonable agreement. Further, comparison is made with the nonlinear hydrostatic theory of Smith [101]; agreement is found to be fair, although the theory postulates a flow configuration differing from those observed in simulations. Also investigated were the effects of modifications to the turbulence model, Reynolds number, small departures from linear stratification, of wall, symmetry, and wave-permeable boundary conditions, and of the size of the computational domain. The last of these was found to affect the transient development of the flow, but to have only a weak effect on the steady state converged to, pending the arrival of reflected internal waves. Grid independence of the solution was investigated, and found to be satisfactory. One subsequent grid dependence test, however, yielded more equivocal results

    Cooling Flow Filaments and the Emission-Line Gas in NGC1275

    Full text link

    Warm Molecular Gas in AGNS and Cooling Flows

    Full text link
    corecore