9 research outputs found
DNAmFitAge:Biological age indicator incorporating physical fitness
Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. We develop blood-based DNAm biomarkers for fitness parameters gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets (average r between 0.16-0.48). We then use these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge is associated with low-intermediate physical activity levels across validation datasets (p = 6.4E-13), and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. DNAmFitAge is lower (p = 0.046) and DNAmVO2max is higher (p = 0.023) in male body builders compared to controls. Physically fit people have a younger DNAmFitAge and experience better age-related outcomes: lower mortality risk (p = 7.2E-51), coronary heart disease risk (p = 2.6E-8), and increased disease-free status (p = 1.1E-7). These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks
The roles of microRNA in redox metabolism and exercise-mediated adaptation
MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs
The Circulating Level of Klotho Is Not Dependent upon Physical Fitness and Age-Associated Methylation Increases at the Promoter Region of the Klotho Gene
(1) Background: Higher levels of physical fitness are believed to increase the physiological quality of life and impact the aging process with a wide range of adaptive mechanisms, including the regulation of the expression of the age-associated klotho (KL) gene and protein levels. (2) Methods: Here, we tested the relationship between the DNA methylation-based epigenetic biomarkers PhenoAge and GrimAge and methylation of the promoter region of the KL gene, the circulating level of KL, and the stage of physical fitness and grip force in two groups of volunteer subjects, trained (TRND) and sedentary (SED), aged between 37 and 85 years old. (3) Results: The circulating KL level is negatively associated with chronological age in the TRND group (r = −0.19; p = 0.0295) but not in the SED group (r = −0.065; p = 0.5925). The age-associated decrease in circulating KL is partly due to the increased methylation of the KL gene. In addition, higher plasma KL is significantly related to epigenetic age-deceleration in the TRND group, assessed by the biomarker of PhenoAge (r = −0.21; p = 0.0192). (4) Conclusions: The level of physical fitness, on the other hand, does not relate to circulating KL levels, nor to the rate of the methylation of the promoter region of the KL gene, only in males.</jats:p
What Determines the Competitive Success of Young Croatian Wrestlers: Anthropometric Indices, Generic or Specific Fitness Performance?
Identifying factors influencing wrestling performance is important for determining which capacities should be developed the most. This research aimed to investigate whether anthropometric indices, generic fitness, and specific fitness performance determine the competitive success of young wrestlers. This research included 49 Croatian Greco–Roman male wrestlers aged 17.75 ± 1.51 years. Variables included training and competing experience, anthropometric indices, generic fitness (countermovement jump and handgrip strength), and specific wrestling fitness test (SWFT). Wrestlers were separated into medallists and non-medallists (i.e., wrestlers who won a medal at the previous National Championship and wrestlers who did not win a medal, respectively). The t-test for independent samples was used to determine the differences between the two categories in all variables. Moreover, discriminant analysis was performed to identify differences in a multivariate manner. Medallists and non-medallists did not differ in anthropometric indices and wrestling experience. Medallists had better results in the countermovement jump (t = 2.55, p p p p < 0.05). It could be suggested that coaches should develop both the generic and specific fitness of their wrestlers to become more successful at competitions
No strong association among epigenetic modifications by DNA methylation, telomere length, and physical fitness in biological aging
AbstractCellular senescence is greatly accelerated by telomere shortening, and the steps forward in human aging are strongly influenced by environmental and lifestyle factors, whether DNA methylation (DNAm) is affected by exercise training, remains unclear. In the present study, we investigated the relationships between physiological functions, maximal oxygen uptake (VO2max), vertical jump, working memory, telomere length (TL) assessed by RT-PCR, DNA methylation-based estimation of TL (DNAmTL), and DNA methylation-based biomarkers of aging of master rowers (N = 146) and sedentary subjects (N = 95), aged between 37 and 85 years. It was found that the TL inversely correlated with chronological age. We could not detect an association between telomere length and VO2max, vertical jump, and working memory by RT-PCR method, while these physiological test results showed a correlation with DNAmTL. DNAmGrimAge and DNAmPhenoAge acceleration were inversely associated with telomere length assessed by both methods. It appears that there are no strong beneficial effects of exercise or physiological fitness on telomere shortening, however, the degree of DNA methylation is associated with telomere length.</jats:p
Blood flow restriction during the resting periods of high-intensity resistance training does not alter performance but decreases MIR-1 and MIR-133A levels in human skeletal muscle
The Skin Microbiome Profile of Contact Sports Athletes—Focus on Sexual Dimorphism and Athlete–Non-Athlete Differences
Background: Athletes’ skin is exposed to increased microbial challenges due to rigorous physical activity, perspiration, constant “skin-to-skin” contact, frequent showering, use of hygiene products, and environmental factors present in training settings. This study aims to characterize the skin microbiome communities of young wrestlers and kickboxers in comparison with their non-athlete age-peers. Methods: A total of 56 combat sport athletes (30 males and 26 females, mean age ± SD = 18.2 ± 1.5 years) and 25 non-athlete youths (control group: 13 males and 12 females, mean age ± SD = 19.8 ± 1.2 years) voluntarily consented to participate in the study conducted by our research team in 2023 and 2024. The skin microbiome analysis involved standardized sampling, DNA isolation, molecular sequencing, and bioinformatic analysis, thus enabling detailed characterization and comparison of the skin microbial community in contact sports athletes and the control group. Results: Our results revealed notable sexual dimorphism in the skin microbiome composition of youth. Males showed a higher relative abundance of bacterial genera associated with nosocomial infections and respiratory diseases, while females had more skin inflammation- and infection-related genera (relative abundances in males vs. in females: Corynebacterium—12.0 vs. 7.2; Luteimonas—4.4. vs. 1.4; Paracoccus—8.8 vs. 5.0; Psychrobacter—6.3 vs. 4.4; Cutibacterium—6.4 vs. 11.4; Kocuria—1.6 vs. 3.9; Micrococcus—5.8 vs. 8.5; Pseudomonas—1.2 vs. 3.4; Streptococcus 3.3 vs. 6.2). We also found skin microbiome differences between athletes and non-athletes in both sexes: wrestlers, who experience frequent skin-to-skin contact and wear less covering sportswear, had microbiome profiles distinct from both kickboxers and non-athletes (relative abundances in athletes vs. in non-athletes: Psychrobacter—7.3 vs. 0.4; Staphylococcus 9.5 vs. 18.5; predominance of genera by sports type: relative abundance of Cutibacterium and Streptococcus was higher in kickboxers, and relative abundance of Acinetobacter, Enhydrobacter, Micrococcus, and Enhydrobacter was higher in wrestlers). Bacteria linked to skin infections (e.g., Aliterella, Arthrobacter, and Empedobacter) were present in around 30% of wrestlers and kickboxers but were absent in the control group. Conclusions: These results underscore the heightened risk of skin infections in contact sports and highlight the importance of regular microbiome monitoring and hygiene protocols among young athletes
