1,338 research outputs found
A new anti-neutrino detection technique based on positronium tagging with plastic scintillators
The main signature for anti-neutrino detection in reactor and geo-neutrino
experiments based on scintillators is provided by the space-time coincidence of
positron and neutron produced in the Inverse Beta Decay reaction. Such a
signature strongly suppresses backgrounds and allows for measurements performed
underground with a relatively high signal-to-background ratio. In an
aboveground environment, however, the twofold coincidence technique is not
sufficient to efficiently reject the high background rate induced by cosmogenic
events. Enhancing the positron-neutron twofold coincidence efficiency has the
potential to pave the way future aboveground detectors for reactor monitoring.
We propose a new detection scheme based on a threefold coincidence, between the
positron ionization, the ortho-positronium (o-Ps) decay, and the neutron
capture, in a sandwich detector with alternated layers of plastic scintillator
and aerogel powder. We present the results of a set of dedicated measurements
on the achievable light yield and on the o-Ps formation and lifetime. The
efficiencies for signal detection and background rejection of a preliminary
detector design are also discussed.Comment: 18 pages, 10 figure
The OPERA experiment
The aim of the OPERA experiment is to provide an unambiguous evidence for the νμ ↔ ντ oscillation by looking at the appearance of ντ in a pure νμ beam. This oscillation will be sought in the region of the oscillation parameters indicated by the atmospheric neutrino results. The experiment is part of the CNGS (Cern Neutrino beam to Gran Sasso) project. The νμ beam produced at CERN will be sent towards the Gran Sasso underground laboratory, where the OPERA detector is under construction. The detector, the physics potential and performance for neutrino oscillation studies including the subleading νμ ↔ νe search are presented
Measurement of ortho-Positronium Properties in Liquid Scintillators
Pulse shape discrimination in liquid scintillator detectors is a
well-established technique for the discrimination of heavy particles from light
particles. Nonetheless, it is not efficient in the separation of electrons and
positrons, as they give rise to indistinguishable scintillator responses. This
inefficiency can be overtaken through the exploitation of the formation of
ortho-Positronium (o-Ps), which alters the time profile of light pulses induced
by positrons.
We characterized the o-Ps properties in the most commonly used liquid
scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the
effects of scintillator doping on the o-Ps properties for dopants currently
used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and
Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties
are suitable for enhancing the electron-positron discrimination.Comment: 4 pages, 1 figure. Contribution to proceedings of the Low
Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April
10-12 201
Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals
The description of realistic strongly correlated systems has recently
advanced through the combination of density functional theory in the local
density approximation (LDA) and dynamical mean field theory (DMFT). This
LDA+DMFT method is able to treat both strongly correlated insulators and
metals. Several interfaces between LDA and DMFT have been used, such as (N-th
order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions.
Such schemes are however either complex in use or additional simplifications
are often performed (i.e., the atomic sphere approximation). We present an
alternative implementation of LDA+DMFT, which keeps the precision of the
Wannier implementation, but which is lighter. It relies on the projection of
localized orbitals onto a restricted set of Kohn-Sham states to define the
correlated subspace. The method is implemented within the Projector Augmented
Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This
opens the way to electronic structure calculations within LDA+DMFT for more
complex structures with the precision of an all-electron method. We present an
application to two correlated systems, namely SrVO3 and beta-NiS (a
charge-transfer material), including ligand states in the basis-set. The
results are compared to calculations done with Maximally Localized Wannier
functions, and the physical features appearing in the orbitally resolved
spectral functions are discussed.Comment: 15 pages, 17 figure
A compact light readout system for longitudinally segmented shashlik calorimeters
The longitudinal segmentation of shashlik calorimeters is challenged by dead
zones and non-uniformities introduced by the light collection and readout
system. This limitation can be overcome by direct fiber-photosensor coupling,
avoiding routing and bundling of the wavelength shifter fibers and embedding
ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present
the first experimental test of this readout scheme performed at the CERN PS-T9
beamline in 2015 with negative particles in the 1-5~GeV energy range. In this
paper, we demonstrate that the scheme does not compromise the energy resolution
and linearity compared with standard light collection and readout systems. In
addition, we study the performance of the calorimeter for partially contained
charged hadrons to assess the separation capability and the response of
the photosensors to direct ionization.Comment: To appear in Nuclear Instruments and Methods in Physics Research,
Double Chooz and recent results
Double Chooz is a reactor ¯νe disappearance experiment located in France near the power plant of Chooz. The main goal of the experiment is the measurement of the θ13 mixing angle and in 2011 for the first time the experiment
observed an indication for a non-zero value of such an oscillation parameter. The mixing angle was successively measured using only the far detector finding the best fit value of sin2(2θ13) = 0.109 ± 0.035. The near detector is under construction and will start data taking by the middle of 2014 allowing to reduce the systematic errors. In this paper I make a review of the experimental results, focusing in particular on independent analyses such as the measurement of the mixing angle θ13 relying on the neutron absorption on gadolinium and hydrogen, and on the reactor rate modulation. I also present for the first time the capability of Double Chooz to identify the ortho-positronium state on event-by-event basis, which could be an additional handle for the electron/positron discrimination in future liquid-scintillator–based detectors
The OPERA experiment Target Tracker
The main task of the Target Tracker detector of the long baseline neutrino
oscillation OPERA experiment is to locate in which of the target elementary
constituents, the lead/emulsion bricks, the neutrino interactions have occurred
and also to give calorimetric information about each event. The technology used
consists in walls of two planes of plastic scintillator strips, one per
transverse direction. Wavelength shifting fibres collect the light signal
emitted by the scintillator strips and guide it to both ends where it is read
by multi-anode photomultiplier tubes. All the elements used in the construction
of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method
Density functional theory calculations on magnetic properties of actinide compounds
We have performed a detailed analysis of the magnetic (collinear and
noncollinear) order and atomic and the electron structures of UO2, PuO2 and UN
on the basis of density functional theory with the Hubbard electron correlation
correction (DFT+U). We have shown that the 3-k magnetic structure of UO2 is the
lowest in energy for the Hubbard parameter value of U=4.6 eV (and J=0.5 eV)
consistent with experiments when Dudarev's formalism is used. In contrast to
UO2, UN and PuO2 show no trend for a distortion towards rhombohedral structure
and, thus, no complex 3-k magnetic structure is to be anticipated in these
materials.Comment: 5 pages, 3 figures 1 table, submitted to Phys. Chem. Chem. Phy
- …
