411 research outputs found
Variation des caractères biométriques des graines et des plantules de neuf provenances de Tamarindus indica L. (Caesalpinioideae)
Introduction. Tamarindus indica est une espèce fruitière d'intérêt économique. Sa domestication au Sahel impose d'évaluer en préalable la variabilité de ses caractères phénotypiques sur l'ensemble de son aire de répartition. L'objectif de notre étude a été de caractériser différentes provenances de tamarinier à partir des caractères phénotypiques de leurs graines et plantules. Matériel et méthodes. L'étude menée en pépinière au Burkina Faso a porté sur l'étude des graines et germinations issues de neuf provenances dont deux d'Afrique de l'Est, deux d'Afrique de l'Ouest, deux d'Asie et trois de zones insulaires. Nous avons mesuré la longueur, la largeur, l'épaisseur et le poids de 100 graines de chaque provenance, et la hauteur, le diamètre au collet et le poids sec de la tige, ainsi que la longueur de la racine principale, le nombre de racines secondaires et le poids sec du système racinaire de 50 plantules âgées de 3 mois. Nous avons effectué une analyse de variance, puis une analyse en composantes principales sur les données centrées réduites de toutes les variables, enfin une classification hiérarchisée ascendante basée sur des indices de similarité. Résultats et discussion. Les différences entre variables ont été hautement significatives. Lors de l'étude des graines, nous avons obtenu un groupe lié à la provenance d'Inde et d'Afrique de l'Est, un autre lié aux provenances ouest-africaines et un groupe intermédiaire en provenance de Thaïlande. Lors de l'étude des plantules, il est apparu un groupe avec croissance aérienne forte et racine principale courte, fortement ramifiée et un groupe avec croissance aérienne faible, racine principale très longue, mais faiblement ramifiée. Le dendrogramme obtenu à partir des ressemblances phénotypiques (variables des graines et plantules) montre une structuration par aire géographique. Conclusion. La variabilité phénotypique inter provenance des plantules et des graines combinée aux corrélations entre variables pourrait permettre de sélectionner de façon précoce les provenances en fonction des objectifs définis pour la sélection. (Résumé d'auteur
Quantitative EEG parameters correlate with the progression of human prion diseases
BACKGROUND: Prion diseases are universally fatal and often rapidly progressive neurodegenerative diseases. EEG has long been used in the diagnosis of sporadic Creutzfeldt-Jakob disease; however, the characteristic waveforms do not occur in all types of prion diseases. Here, we re-evaluate the utility of EEG by focusing on the development of biomarkers. We test whether abnormal quantitative EEG parameters can be used to measure disease progression in prion diseases or predict disease onset in healthy individuals at risk of disease. METHODS: In the National Prion Monitoring Cohort study, we did quantitative encephalography on 301 occasions in 29 healthy controls and 67 patients with prion disease. The patients had either inherited prion disease or sporadic Creutzfeldt-Jakob disease. We computed the main background frequency, the α and θ power and the α/θ power ratio, then averaged these within 5 electrode groups. These measurements were then compared among participant groups and correlated with functional and cognitive scores cross-sectionally and longitudinally. RESULTS: We found lower main background frequency, α power and α/θ power ratio and higher θ power in patients compared to control participants. The main background frequency, the power in the α band and the α/θ power ratio also differed in a consistent way among the patient groups. Moreover, the main background frequency and the α/θ power ratio correlated significantly with functional and cognitive scores. Longitudinally, change in these parameters also showed significant correlation with the change in clinical and cognitive scores. CONCLUSIONS: Our findings support the use of quantitative EEG to follow the progression of prion disease, with potential to help evaluate the treatment effects in future clinical-trials
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Digital subtraction radiographic analysis of the combination of bioabsorbable membrane and bovine morphogenetic protein pool in human periodontal infrabony defects
Objectives: This study assessed the bone density gain and its relationship with the
periodontal clinical parameters in a case series of a regenerative therapy procedure.
Material and Methods: Using a split-mouth study design, 10 pairs of infrabony defects from
15 patients were treated with a pool of bovine bone morphogenetic proteins associated with
collagen membrane (test sites) or collagen membrane only (control sites). The periodontal
healing was clinically and radiographically monitored for six months. Standardized presurgical
and 6-month postoperative radiographs were digitized for digital subtraction
analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and
0.105 ± 0.423 in the test and control group, respectively (p>0.05). Results: As regards the
area size of bone density change, the influence of the therapy was detected in 2.5 mm2 in
the test group and 2 mm2 in the control group (p>0.05). Additionally, no correlation was
observed between the favorable clinical results and the bone density gain measured by
digital subtraction radiography (p>0.05). Conclusions: The findings of this study suggest
that the clinical benefit of the regenerative therapy observed did not come with significant
bone density gains. Long-term evaluation may lead to a different conclusions
The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models
We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years
Geographic genetic structure of Iberian columbines (gen. Aquilegia)
Southern European columbines (genus Aquilegia)are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification,but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex
Emerging pharmacotherapy for cancer patients with cognitive dysfunction
Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction
Impurity-enhanced solid-state amorphization : the Ni-Si thin film reaction altered by nitrogen
Solid-state amorphization, the growth of an amorphous phase during annealing, has been studied in a wide variety of thin film structures. Whereas research on the remarkable growth of such a metastable phase has mostly focused on strictly binary systems, far less is known about the influence of impurities on such reactions. In this paper, the influence of nitrogen, introduced via ion implantation, is studied on the solid-state amorphization reaction of thin (35 nm) Ni films with Si, using in situ x-ray diffraction (XRD), ex situ Rutherford backscattering spectrometry, XTEM, and synchrotron XRD. It is shown that due to small amounts of nitrogen (<2 at.%), an amorphous Ni-Si phase grows almost an order of magnitude thicker during annealing than for unimplanted samples. Nitrogen hinders the nucleation of the first crystalline phases, leading to a new reaction path: the formation of the metal-rich crystalline silicides is suppressed in favour of an amorphous Ni-Si alloy; during a brief temperature window between 330 and 350 degrees C, the entire film is converted to an amorphous phase. The first crystalline structure to grow is the orthorhombic NiSi phase. We demonstrate that this impurity-enchanced solid-state amorphization reaction occurs only under specific implantation conditions. In particular, the initial distribution of nitrogen upon implantation is crucial: sufficient nitrogen impurities must be present at the interface throughout the reaction. Introducing implantation damage without nitrogen impurities (e.g. by implanting a noble gas) does not cause the enhanced solid-state amorphization reaction. Moreover, we show that the stabilizing effect of nitrogen on amorphous Ni-Si films (with a composition ranging from 40% to 50% Si) is not restricted to thin film reactions, but is a general feature of the Ni-Si system
Recommended from our members
The physiological responses of cacao to the environment and the implications for climate change resilience. A review
Cacao (Theobroma cacao L.) is a tropical perennial crop which is of great economic importance to the confectionary industry and to the economies of many countries of the humid tropics where it is grown. Some recent studies have suggested climate change could severely impact cacao production in West Africa. It is essential to incorporate our understanding of the physiology and genetic variation within cacao germplasm when discussing the implications of climate change on cacao productivity and developing strategies for climate resilience in cacao production.
Here we review the current research on the physiological responses of cacao to various climate factors. Our main findings are 1) water limitation causes significant yield reduction in cacao but genotypic variation in sensitivity is evident, 2) in the field cacao experiences higher temperatures than is often reported in the literature, 3) the complexity of the cacao/ shade tree interaction can lead to contradictory results, 4) elevated CO2 may alleviate some negative effects of climate change 5) implementation of mitigation strategies can help reduce environmental stress, 6) significant gaps in the research need addressing to accelerate the development of climate resilience. Harnessing the significant genetic variation apparent within cacao germplasm is essential to develop modern varieties capable of high yields in non-optimal conditions. Mitigation strategies will also be essential but to use shading to best effect shade tree selection is crucial to avoid resource competition. Cacao is often described as being sensitive to climate change but genetic variation, adaptive responses, appropriate mitigation strategies and interactive climate effects should all be considered when predicting the future of cacao production. Incorporating these physiological responses to various environmental conditions and developing a deeper understanding of the processes underlying these responses will help to accelerate the development of a more resource use efficient tree ensuring sustainable production into the future
- …
