964 research outputs found

    Multiple nodeless superconducting gaps in optimally-doped SrTi1x_{1-x}Nbx_{x}O3_{3}

    Full text link
    We present the first study of thermal conductivity in superconducting SrTi1x_{1-x}Nbx_{x}O3_{3}, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a significantly lower temperature than the resistive Tc_{c}. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk Tc_{c}, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.Comment: 6 pages including a supplemen

    Boron concentration profiling by high angle annular dark field-scanning transmission electron microscopy in homoepitaxial delta-doped diamond layers

    Get PDF
    To develop further diamond related devices, the concentration and spatial location of dopants should be controlled down to the nanometer scale. Scanning transmission electron microscopy using the high angle annular dark field mode is shown to be sensitive to boron doping in diamond epilayers. An analytical procedure is described, whereby local boron concentrations above 1020 cm-3 were quantitatively derived down to nanometer resolution from the signal dependence on thickness and boron content. Experimental boron local doping profiles measured on diamond p-/p++/p- multilayers are compared to macroscopic profiles obtained by secondary ion mass spectrometry, avoiding reported artefacts.4 page

    Characterization of an internal slope movement structure by hydrogeophysical surveying

    Get PDF
    International audienceA hydrogeophysical study was carried out by a water controlled injection within a landslide situated on an active part of the La Clapière landslide foot (Alpes Maritimes, France). Coupling of both real-time geophysical and hydrological follow ups allowed the representation and quantification of the surface water drainage in space and time within the slipped mass. Thus, 30% of the injected water is quickly drained by a complex slipping surface meanly situated at 10-m depth. The transit time between injection and outflow of the water allowed an overloading of about 10 m3 (i.e. 10 tons) comparable with classical rain events in the area. This weight and the associated interstitial pressures increase have not led to any movements asking for the origin of the water volumes which could induce destabilizations. This experiment enabled an accurate redefinition of the internal slope structure and the understanding of the dynamics of the slipped mass with a surface hydraulic request

    The environmental dependence of redox energetics of PuO2 and \alpha-Pu2O3: A quantitative solution from DFT+U calculations

    Full text link
    We report a comprehensive density functional theory (DFT) + UU study of the energetics of charged and neutral oxygen defects in both PuO2_{2} and α\alpha-Pu2_{2}O3_{3}, and present a quantitative determination of the equilibrium compositions of reduced PuO2_{2} (PuO2x_{2-x}) as functions of environmental temperature and partial pressure of oxygen, which shows fairly agreement with corresponding high-temperature experiments. Under ambient conditions, the endothermic reduction of PuO2_{2} to α\alpha-Pu2_{2}O3_{3} is found to be facilitated by accompanying volume expansion of PuO2x_{2-x} and the possible migration of O-vacancy, whereas further reduction of α\alpha -Pu2_{2}O3_{3} is predicted to be much more difficult. In contrast to the endothermic oxidation of PuO2_{2},\ the oxidation of α\alpha-Pu2_{2} O3_{3} is a stable exothermic process.Comment: 5 PLA pages, 4 figure

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page

    Local boron doping quantification in homoepitaxial diamond structures

    Get PDF
    The capability of transmission electronmicroscopy (TEM) using the high angle annular dark fieldmode (HAADF,also labelled Z-contrast) to quantify boron concentration, in the high doping range between 1019cm−3 and 1021cm−3, is demonstrated. Thanks to the large relative variation of atomic number Z between carbon and boron, doping concentration maps and profiles are obtained with a nanometer-scale resolution. A novel numerical simulation procedure allows the boron concentration quantification and demonstrates the high sensitivity and spatial resolution of the technique.4 page

    New Pseudo-Phase Structure for α\alpha-Pu

    Full text link
    In this paper we propose a new pseudo-phase crystal structure, based on an orthorhombic distortion of the diamond structure, for the ground-state α\alpha-phase of plutonium. Electronic-structure calculations in the generalized-gradient approximation give approximately the same total energy for the two structures. Interestingly, our new pseudo-phase structure is the same as the Pu γ\gamma-phase structure except with very different b/a and c/a ratios. We show how the contraction relative to the γ\gamma phase, principally in the zz direction, leads to an α\alpha-like structure in the [0,1,1] plane. This is an important link between two complex structures of plutonium and opens new possibilities for exploring the very rich phase diagram of Pu through theoretical calculations

    Electron energy loss spectroscopy determination of Ti oxidation state at the (001) LaAlO3/SrTiO3 interface as a function of LaAlO3 growth conditions

    Full text link
    At the (001) interface between the two band-insulators LaAlO3 and SrTiO3, a high-mobility electron gas may appear, which has been the object of numerous works over the last four years. Its origin is a subject of debate between the interface polarity and unintended doping. Here we use electron energy loss 'spectrum images', recorded in cross-section in a scanning transmission electron microscope, to analyse the Ti3+ ratio, characteristic of extra electrons. We find an interface concentration of Ti3+ that depends on growth conditions.Comment: 6 page

    Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers.

    Get PDF
    International audienceArtificial and natural tracer tests combined with high accurate electronic distancemeter measurements are conducted on a small landslide with a well known slip surface geometry. Outflow yields and chemical contents are monitored for all the experiment duration and they analyzed to estimate the slip surface hydraulic parameters. The main result is that the slip surface acts as a drain for groundwater flows that evacuates interstitial pressures in the slope and brings the sliding mass to be more stable one

    Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide

    Get PDF
    International audienceGeophysical surveys were conducted on the very unstable front part of the La Clapière landslide in the French Alps (Alpes Maritimes). The electrical resistivity survey was carried out to obtain, for the first time on this deep-seated landslide, 3D information on the slipping surface and the vertical drained faults. Moreover, we planned to follow within time (6 months) the evolution of the saturated zones (presence of gravitational water) and their percolation into the shearing zones. Our 4D results showed the importance of the complex water channelization within the slope and relation to geological discontinuities
    corecore