2,018 research outputs found
The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms?
Rationale: A sensitized dopamine system may be linked to the genesis of psychotic symptoms in schizophrenia. Following withdrawal from amphetamine exposures, psychotic-like traits have been robustly demonstrated, but the presence of cognitive/mnemonic deficits remains uncertain. Methods: Adult male Lewis and Fischer rats, differing in cognitive performance, were exposed intermittently to escalating doses of amphetamine over 5weeks. This was effective in producing behavioral sensitization to a subsequent amphetamine challenge. Following 27days of drug withdrawal, the animals were assessed in Pavlovian conditioning, object recognition, and spatial working memory. In addition, prepulse inhibition (PPI), spontaneous motor activity, and anxiety-like behavior were measured. Results: Amphetamine pretreatment induced behavioral sensitization in both rat strains similarly. Working memory was enhanced in Fischer but not Lewis rats following withdrawal. Spontaneous novel object preference was enhanced in sensitized Fischer rats, but was impaired in sensitized Lewis rats, thus effectively reversing the strain difference in non-sensitized controls. In contrast, Pavlovian fear conditioning remained unaffected and so were anxiety-like behavior, open field activity, and PPI. Conclusion: The face validity of the amphetamine withdrawal model for cognitive deficits was limited to the object recognition memory impairment observed in sensitized Lewis rats. Yet, the possibility that enhancing dopaminergic neurotransmission may facilitate object recognition and spatial working memory performance was demonstrated in sensitized Fischer rats. Identification of the mechanisms underlying such strain-dependent effects would be instrumental in the further specifications of the construct validity, and therefore the limitations and potential of the amphetamine sensitization model of schizophreni
Baseline prepulse inhibition expression predicts the propensity of developing sensitization to the motor stimulant effects of amphetamine in C57BL/6 mice
Rationale: The startle reflex to a sudden intense acoustic pulse stimulus is attenuated if the pulse is shortly preceded by a weak prepulse stimulus. This represents a form of sensory gating, known as prepulse inhibition (PPI), observable across species. PPI is modulated by dopamine and readily disrupted by acute amphetamine. Prior repeated exposures to amphetamine also disrupt PPI even when the drug is not present during test, suggesting that a sensitized mesolimbic dopamine system—inducible even by a single exposure to amphetamine—might be responsible. However, this causative link has been challenged by inconsistent efficacy between different amphetamine pre-treatment regimes, which all robustly sensitize the behavioral response to amphetamine. Methods: Here, the presence of such a link in reverse was tested by comparing the propensity to develop amphetamine sensitization between high- and low-PPI expressing individuals identified within a homogeneous cohort of C57BL/6 mice. Comparison of dopamine content including its metabolites was performed separately in drug naïve mice by post-mortem HPLC. Results: Behavioral sensitization was substantially stronger in the low-PPI group compared with the high-PPI group, while the magnitude of their response to the first amphetamine challenge was similar. Dopamine content within the nucleus accumbens and medial prefrontal cortex was significantly higher in low-PPI relative to high-PPI mice. Conclusion: Individuals with weak sensory gating characterized by low basal PPI expression may be more susceptible to the development of dopamine sensitization and therefore at greater risk of developing schizophrenia. Conversely, high baseline expression might predict a resistance to dopaminergic sensitizatio
Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes
Purpose: To compare hemoglobin mass (Hbmass) changes during an 18-day live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). Methods: Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control (CON): n = 7) and participated in an 18-day LHTL camp. NH and HH slept at 2250 m while CON slept and all groups trained at altitudes 0.08) and remained unchanged in CON (+0.2%, P = 0.89). Conclusion: HH and NH evoked similar Hbmass increases for the same hypoxic dose and after 18-day LHTL. The wide variability in individual Hbmass responses in HH and NH emphasize the importance of individual Hbmass evaluation of altitude training.This study was financially supported by the Federal Office of Sport (FOSPO; Switzerland) and by the Ministère des Sports, de la Jeunesse, de l’Education Populaire et de la Vie Associative (MSJEPVA)/Institut National du Sport, de l’Expertise et de la Performance (INSEP, France)
Recommended from our members
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations
ADHERE: randomized controlled trial comparing renal function in de novo kidney transplant recipients receiving prolonged-release tacrolimus plus mycophenolate mofetil or sirolimus
ADHERE was a randomized, open-label, Phase IV study comparing renal function at Week 52 postkidney transplant, in patients who received prolongedrelease tacrolimus-based immunosuppressive regimens. On Days 0?27, patients received prolonged-release tacrolimus (initially 0.2 mg/kg/day), corticosteroids, and mycophenolate mofetil (MMF). Patients were randomized on Day 28 to receive either prolonged-release tacrolimus plus MMF (Arm 1) or prolongedrelease tacrolimus (?25% dose reduction on Day 42) plus sirolimus (Arm 2). The primary endpoint was glomerular filtration rate by iohexol clearance (mGFR) at Week 52. Secondary endpoints included eGFR, creatinine clearance (CrCl), efficacy failure (patient withdrawal or graft loss), and patient/graft survival. Tolerability was analyzed. The full-analysis set comprised 569 patients (Arm 1: 287; Arm 2: 282). Week 52 mean mGFR was similar in Arm 1 versus Arm 2 (40.73 vs. 41.75 ml/min/1.73 m2; P = 0.405), as were the secondary endpoints, except composite efficacy failure, which was higher in Arm 2 versus 1 (18.2% vs. 11.5%; P = 0.002) owing to a higher postrandomization withdrawal rate due to adverse events (AEs) (14.4% vs. 5.2%). Results from this study show comparable renal function between arms at Week 52, with fewer AEs leading to study discontinuation with prolonged-release tacrolimus plus MMF (Arm 1) versus lower dose prolonged-release tacrolimus plus sirolimus (Arm 2)
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general
Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
Planck early results XX : New light on anomalous microwave emission from spinning dust grains
Peer reviewe
Cationic tungsten alkylidyne N‐heterocyclic carbene complexes : synthesis and reactivity in alkyne metathesis
The first cationic and neutral tungsten alkylidyne N‐heterocyclic carbene (NHC) complexes bearing one triflate ligand were synthesized and tested for their reactivity in alkyne metathesis. Both types of tungsten alkylidyne complexes display a higher productivity in alkyne metathesis than the analogous neutral tungsten alkylidyne NHC trisalkoxide complexes. Reaction of W(≡CC6H4OMe)(1,3‐bis(1‐hydroxy‐1,1‐trifluoromethylethyl)‐imidazol‐2‐ylidene)Cl (W18) with AgB(ArF)4 (ArF = 3,5‐bis(trifluoromethyl)phenyl) resulted in the unexpected formation of, to the best of our knowledge, the first cationic ditungstatetrahedrane W2(1,3‐bis(1‐hydroxy‐1,1‐trifluoromethyl‐ethyl)‐imidazol‐2‐ylidene)2(MeCN)(µ‐((Ar)CC(Ar)))+ (B(ArF)4)- (W19, Ar = C6H4OMe), which suggests bimolecular decomposition as a possible decomposition pathway of cationic tungsten alkylidyne NHC complexes. Reaction of the cationic tungsten alkylidyne NHC complex W(≡CC6H4OMe)(1,3‐diisopropylimidazol‐2‐ylidene)(OC(CF3)2Me)2(NCtBu)+ (B(ArF)4)- (W7) with 1‐phenyl‐1‐propyne allowed for the isolation of a cationic tungstacyclobutadiene W(C3(Ph)(Me)(C6H4OMe))(1,3‐diisopropylimidazol‐2‐ylidene)(OC(CF3)2Me)2(NCtBu)+ (B(ArF)4)- (W20). Its formation strongly supports a cationic active species in the alkyne metathesis with tungsten alkylidyne NHC complexes.Deutsche ForschungsgemeinschaftProjekt DEA
- …
