50 research outputs found

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Antileishmanial High-Throughput Drug Screening Reveals Drug Candidates with New Scaffolds

    Get PDF
    Drugs currently available for leishmaniasis treatment often show parasite resistance, highly toxic side effects and prohibitive costs commonly incompatible with patients from the tropical endemic countries. In this sense, there is an urgent need for new drugs as a treatment solution for this neglected disease. Here we show the development and implementation of an automated high-throughput viability screening assay for the discovery of new drugs against Leishmania. Assay validation was done with Leishmania promastigote forms, including the screening of 4,000 compounds with known pharmacological properties. In an attempt to find new compounds with leishmanicidal properties, 26,500 structurally diverse chemical compounds were screened. A cut-off of 70% growth inhibition in the primary screening led to the identification of 567 active compounds. Cellular toxicity and selectivity were responsible for the exclusion of 78% of the pre-selected compounds. The activity of the remaining 124 compounds was confirmed against the intramacrophagic amastigote form of the parasite. In vitro microsomal stability and cytochrome P450 (CYP) inhibition of the two most active compounds from this screening effort were assessed to obtain preliminary information on their metabolism in the host. The HTS approach employed here resulted in the discovery of two new antileishmanial compounds, bringing promising candidates to the leishmaniasis drug discovery pipeline

    An Image-Based High-Content Screening Assay for Compounds Targeting Intracellular Leishmania donovani Amastigotes in Human Macrophages

    Get PDF
    Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a 384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading method was based on DNA staining and required the development of a customized algorithm to analyze the images, which enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity information based on the number of host cells. Comparison of this assay with one that used the promastigote form to screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the most appropriate to be used in primary screening assay for Leishmania

    2016 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1003/thumbnail.jp

    High-content imaging of <i>Mycobacterium tuberculosis</i>-infected macrophages: an <i>in vitro</i> model for tuberculosis drug discovery

    Full text link
    Macrophages are reservoirs for replicating mycobacterium during tuberculosis (TB) infections. In this study, small molecules to be developed as anti-tubercular treatments were investigated for their ability to kill intracellular bacteria in in vitro macrophage models. High-content imaging technologies offer a high-throughput method to quantify a drug’s ability to inhibit Mycobacterium tuberculosis intracellular invasion and multiplication in host cells. Dedicated image analysis enables the automated quantification of infected macrophages, and compounds that inhibit mycobacteria proliferation can be tested using this method. Furthermore, the implementation of the assay in 384-well microtiter plates combined with automated image acquisition and analysis allows large-scale screening of compound libraries in M. tuberculosis-infected macrophages. Here we describe a high-throughput and high-content workflow and detail its utility for the development of new TB drugs. </jats:p

    High Content Screening for Compounds that Induce Early Stages of Human Embryonic Stem Cell Differentiation

    Full text link
    International audienceEmbryonic stem cells due to their self-renewal and pluripotency properties can be used to repair damaged tissues,and as an unlimited source of differentiated cells. Although stem cells represent an important opportunity for cell based therapy, and small molecules screening in the context of drug or target discovery, many drawbacks are still preventing their widespread uses. One of the most significant limitations is related to the complexity, as well as the reliability, of current protocols driving stem cells into any homogeneously differentiated cellular population. In this respect there is a strong demand for molecular agents promoting differentiation and thereby enabling robust, efficient and safe production of differentiated cells. In order to identify novel molecules that enhance early stages of differentiation, we developed an image based high content screening (HCS) approach using human embryonic stem cells (hESC). In our approach, we took advantage of custom image mining software specifically adapted for the selection of stem cell differentiation agents and the rejection of false positive hits. As a prove of concept we screened ~3500 small molecules originating from commercial libraries and were able to identify molecules of interests that show stem cell differentiation properties comparable to the phenotypic signature obtained with retinoic acid
    corecore