614 research outputs found
Recommended from our members
Validation of machine learning models to detect amyloid pathologies across institutions.
Semi-quantitative scoring schemes like the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) are the most commonly used method in Alzheimer's disease (AD) neuropathology practice. Computational approaches based on machine learning have recently generated quantitative scores for whole slide images (WSIs) that are highly correlated with human derived semi-quantitative scores, such as those of CERAD, for Alzheimer's disease pathology. However, the robustness of such models have yet to be tested in different cohorts. To validate previously published machine learning algorithms using convolutional neural networks (CNNs) and determine if pathological heterogeneity may alter algorithm derived measures, 40 cases from the Goizueta Emory Alzheimer's Disease Center brain bank displaying an array of pathological diagnoses (including AD with and without Lewy body disease (LBD), and / or TDP-43-positive inclusions) and levels of Aβ pathologies were evaluated. Furthermore, to provide deeper phenotyping, amyloid burden in gray matter vs whole tissue were compared, and quantitative CNN scores for both correlated significantly to CERAD-like scores. Quantitative scores also show clear stratification based on AD pathologies with or without additional diagnoses (including LBD and TDP-43 inclusions) vs cases with no significant neurodegeneration (control cases) as well as NIA Reagan scoring criteria. Specifically, the concomitant diagnosis group of AD + TDP-43 showed significantly greater CNN-score for cored plaques than the AD group. Finally, we report that whole tissue computational scores correlate better with CERAD-like categories than focusing on computational scores from a field of view with densest pathology, which is the standard of practice in neuropathological assessment per CERAD guidelines. Together these findings validate and expand CNN models to be robust to cohort variations and provide additional proof-of-concept for future studies to incorporate machine learning algorithms into neuropathological practice
Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106747/1/ana24113.pd
TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence
Design and Initial Results of a Multi-Phase Randomized Trial of Ceftriaxone in Amyotrophic Lateral Sclerosis
Objectives: Ceftriaxone increases expression of the astrocytic glutamate transporter, EAAT2, which might protect from glutamate-mediated excitotoxicity. A trial using a novel three stage nonstop design, incorporating Phases I-III, tested ceftriaxone in ALS. Stage 1 determined the cerebrospinal fluid pharmacokinetics of ceftriaxone in subjects with ALS. Stage 2 evaluated safety and tolerability for 20-weeks. Analysis of the pharmacokinetics, tolerability, and safety was used to determine the ceftriaxone dosage for Stage 3 efficacy testing. Methods: In Stage 1, 66 subjects at ten clinical sites were enrolled and randomized equally into three study groups receiving intravenous placebo, ceftriaxone 2 grams daily or ceftriaxone 4 grams daily divided BID. Participants provided serum and cerebrospinal fluid for pharmacokinetic analysis on study day 7. Participants continued their assigned treatment in Stage 2. The Data and Safety Monitoring Board (DSMB) reviewed the data after the last participants completed 20 weeks on study drug. Results: Stage 1 analysis revealed linear pharmacokinetics, and CSF trough levels for both dosage levels exceeding the pre-specified target trough level of 1 µM (0.55 µg/mL). Tolerability (Stages 1 and 2) results showed that ceftriaxone at dosages up to 4 grams/day was well tolerated at 20 weeks. Biliary adverse events were more common with ceftriaxone but not dose-dependent and improved with ursodeoxycholic (ursodiol) therapy. Conclusions: The goals of Stages 1 and 2 of the ceftriaxone trial were successfully achieved. Based on the pre-specified decision rules, the DSMB recommended the use of ceftriaxone 4 g/d (divided BID) for Stage 3, which recently closed. Trial Registration ClinicalTrials.gov NCT00349622
Analysis of graft survival in a trial of stem cell transplant in ALS
Objective The first US Food and Drug Administration–approved clinical trial to treat amyotrophic lateral sclerosis ( ALS ) with neural stem cell–based therapy is in progress. The goal of the current study was to identify and assess the survival of human spinal cord–derived neural stem cells ( HSSC s) transplanted into the spinal cord in patients with ALS . Methods Spinal cords transplanted with HSSCs were examined from six autopsy cases. Homogenized tissues were interrogated for the presence of donor versus recipient DNA using real‐time PCR methods ( qPCR ). Fluorescence in situ hybridization (FISH) was performed using DNA probes for XY chromosomes to identify male donor HSSCs in one female case, and immunohistochemistry (IHC) was used to characterize the identified donor cells. Results Genomic DNA from donor HSSC s was identified in all cases, comprising 0.67–5.4% of total tissue DNA in patients surviving 196 to 921 days after transplantation. In the one female patient a “nest” of cells identified on H&E staining were XY ‐positive by FISH , confirming donor origin. A subset of XY ‐positive cells labeled for the neuronal marker NeuN and stem cell marker SOX 2. Interpretation This is the first study to identify human neural stem cells transplanted into a human spinal cord. Transplanted HSSC s survived up to 2.5 years posttransplant. Some cells differentiated into neurons, while others maintained their stem cell phenotype. This work is a proof of concept of the survival and differentiation of human stems cell transplanted into the spinal cord of ALS patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109593/1/acn3134.pd
Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data
Background Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments. Methods We assessed the effect of data processing steps on the alignment statistics and the functional enrichment analysis results of RNA- and ChIP-seq data. We compared differentially processed RNA-seq data with matching microarray data on the same patient samples to determine whether changes in pre-processing improved correlation between the two. We have developed a simple tool to remove low complexity regions, RepeatSoaker, available at https://github.com/mdozmorov/RepeatSoaker, and tested its effect on the alignment statistics and the results of the enrichment analyses. Results Both adapter trimming and duplicate removal moderately improved the strength of biological signals in RNA-seq and ChIP-seq data. Aggressive filtering of reads overlapping with low complexity regions, as defined by RepeatMasker, further improved the strength of biological signals, and the correlation between RNA-seq and microarray gene expression data. Conclusions Adapter trimming and duplicates removal, coupled with filtering out reads overlapping low complexity regions, is shown to increase the quality and reliability of detecting biological signals in RNA-seq and ChIP-seq data
Theory and practice: bulk synthesis of C3B and its H2- and Li-storage capacity.
Previous theoretical studies of C3B have suggested that boron-doped graphite is a promising H2- and Li-storage material, with large maximum capacities. These characteristics could lead to exciting applications as a lightweight H2-storage material for automotive engines and as an anode in a new generation of batteries. However, for these applications to be realized a synthetic route to bulk C3B must be developed. Here we show the thermolysis of a single-source precursor (1,3-(BBr2)2C6H4) to produce graphitic C3B, thus allowing the characteristics of this elusive material to be tested for the first time. C3B was found to be compositionally uniform but turbostratically disordered. Contrary to theoretical expectations, the H2- and Li-storage capacities are lower than anticipated, results that can partially be explained by the disordered nature of the material. This work suggests that to model the properties of graphitic materials more realistically, the possibility of disorder must be considered.We thank the ERC (Advance Investigator awards for D.S.W., C.P.G.), the EPSRC (T.C.K., P.D.M., H.G., J.C.), and the Spanish Ministerio de Economia y Competitividad (under grants ENE2011-24-412 and IPT-2011-1553-420000). We thank John Bulmer for Raman spectroscopy and Keith Parmenter for glass blowing. We thank the Schlumberger Gould Research Centre for XPS analysis.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20141220
The role of Comprehension in Requirements and Implications for Use Case Descriptions
Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements.
Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design
Unique Case of Anca-Negative Pauci-Immune Necrotizing Glomerulonephritis With Diffuse Alveolar Hemorrhage, Potentially Associated With Midostaurin
We present a 61-year-old male with FLT3-mutated acute myeloid leukemia treated with midostaurin who developed acute kidney injury requiring hemodialysis and pulmonary renal syndrome. Antibodies to proteinase-3, myeloperoxidase, and glomerular basement membrane were negative. Renal biopsy confirmed acute pauci-immune focal necrotizing glomerulonephritis (GN) with fibrin crescents indicating rapidly progressing glomerulonephritis. He improved with pulse methylprednisolone, intravenous cyclophosphamide, and plasma exchange with resolution of hemoptysis. This case highlights the importance of prompt renal biopsy to guide early initiation of life-saving therapies. To our knowledge, this is the first reported case of ANCA-negative pauci-immune necrotizing GN likely secondary to midostaurin
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
