246 research outputs found

    Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators

    Get PDF
    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processingboth during reward anticipation and receipt of rewardresponded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives

    A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain

    Get PDF
    A growing body of research suggests that non-invasive electrical brain stimulation can more effectively modulate neural activity when phase-locked to the underlying brain rhythms. Transcranial alternating current stimulation (tACS) can potentially stimulate the brain in-phase to its natural oscillations as recorded by electroencephalography (EEG), but matching these oscillations is a challenging problem due to the complex and time-varying nature of the EEG signals. Here we address this challenge by developing and testing a novel approach intended to deliver tACS phase-locked to the activity of the underlying brain region in real-time. This novel approach extracts phase and frequency from a segment of EEG, then forecasts the signal to control the stimulation. A careful tuning of the EEG segment length and prediction horizon is required and has been investigated here for different EEG frequency bands. The algorithm was tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in terms of phase-locking values across a variety of EEG frequency bands. Phase-locking performance was found to be consistent across individuals and recording locations. With current parameters, the algorithm performs best when tracking oscillations in the alpha band (8–13 Hz), with a phase-locking value of 0.77 ± 0.08. Performance was maximized when the frequency band of interest had a dominant frequency that was stable over time. The algorithm performs faster, and provides better phase-locked stimulation, compared to other recently published algorithms devised for this purpose. The algorithm is suitable for use in future studies of phase-locked tACS in preclinical and clinical applications

    Neural Correlates of Effective Learning in Experienced Medical Decision-Makers

    Get PDF
    Accurate associative learning is often hindered by confirmation bias and success-chasing, which together can conspire to produce or solidify false beliefs in the decision-maker. We performed functional magnetic resonance imaging in 35 experienced physicians, while they learned to choose between two treatments in a series of virtual patient encounters. We estimated a learning model for each subject based on their observed behavior and this model divided clearly into high performers and low performers. The high performers showed small, but equal learning rates for both successes (positive outcomes) and failures (no response to the drug). In contrast, low performers showed very large and asymmetric learning rates, learning significantly more from successes than failures; a tendency that led to sub-optimal treatment choices. Consistently with these behavioral findings, high performers showed larger, more sustained BOLD responses to failed vs. successful outcomes in the dorsolateral prefrontal cortex and inferior parietal lobule while low performers displayed the opposite response profile. Furthermore, participants' learning asymmetry correlated with anticipatory activation in the nucleus accumbens at trial onset, well before outcome presentation. Subjects with anticipatory activation in the nucleus accumbens showed more success-chasing during learning. These results suggest that high performers' brains achieve better outcomes by attending to informative failures during training, rather than chasing the reward value of successes. The differential brain activations between high and low performers could potentially be developed into biomarkers to identify efficient learners on novel decision tasks, in medical or other contexts

    ERPs and their brain sources in perceptual and conceptual prospective memory tasks: commonalities and differences between the two tasks

    Get PDF
    The present study examined whether Event-Related Potential (ERP) components and their neural generators are common to perceptual and conceptual prospective memory (PM) tasks or specific to the form of PM cue involved. We used Independent Component Analysis (ICA) to study the contributions of brain source activities to scalp ERPs across the different phases of two event-based PM-tasks: (1) holding intentions during a delay (monitoring) (2) detecting the correct context to perform the delayed intention (cue detection) and (3) carrying out the action (realisation of delayed intentions). Results showed that monitoring for both perceptual and conceptual PM-tasks was characterised by an enhanced early occipital negativity (N200). In addition the conceptual PM-task showed a long-lasting effect of monitoring significant around 700 ms. Perceptual PM-task cues elicited an N300 enhancement associated with cue detection, whereas a midline N400-like response was evoked by conceptual PM-task cues. The Prospective Positivity associated with realisation of delayed intentions was observed in both conceptual and perceptual tasks. A common frontal-midline brain source contributed to the Prospective Positivity in both tasks and a strong contribution from parieto-frontal brain sources was observed only for the perceptually cued PM-task. These findings support the idea that: (1) The enhanced N200 can be understood as a neural correlate of a ‘retrieval mode’ for perceptual and conceptual PM-tasks, and additional strategic monitoring is implemented according the nature of the PM task; (2) ERPs associated with cue detection are specific to the nature of the PM cues; (3) Prospective Positivity reflects a general PM process, but the specific brain sources contributing to it depend upon the nature of the PM task

    Dementias show differential physiological responses to salient sounds.

    Get PDF
    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases

    Decision making, the P3, and the locus coeruleus-norepinephrine system.

    Get PDF
    Psychologists and neuroscientists have had a long-standing interest in the P3, a prominent component of the event-related brain potential. This review aims to integrate knowledge regarding the neural basis of the P3 and to elucidate its functional role in information processing. The authors review evidence suggesting that the P3 reflects phasic activity of the neuromodulatory locus coeruleus-norepinephrine (LC-NE) system. They discuss the P3 literature in the light of empirical findings and a recent theory regarding the information-processing function of the LC-NE phasic response. The theoretical framework emerging from this research synthesis suggests that the P3 reflects the response of the LC-NE system to the outcome of internal decision-making processes and the consequent effects of noradrenergic potentiation of information processing. Copyright 2005 by the American Psychological Association

    Risk of seizures in transcranial magnetic stimulation: a clinical review to inform consent process focused on bupropion

    Get PDF
    OBJECTIVE: When considering repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder, clinicians often face a lack of detailed information on potential interactions between rTMS and pharmacotherapy. This is particularly relevant to patients receiving bupropion, a commonly prescribed antidepressant with lower risk of sexual side effects or weight increase, which has been associated with increased risk of seizure in particular populations. Our aim was to systematically review the information on seizures occurred with rTMS to identify the potential risk factors with attention to concurrent medications, particularly bupropion. DATA SOURCES: We conducted a systematic review through the databases PubMed, PsycINFO, and EMBASE between 1980 and June 2015. Additional articles were found using reference lists of relevant articles. Reporting of data follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. STUDY SELECTION: Two reviewers independently screened articles reporting the occurrence of seizures during rTMS. Articles reporting seizures in epilepsy during rTMS were excluded. A total of 25 rTMS-induced seizures were included in the final review. DATA EXTRACTION: Data were systematically extracted, and the authors of the applicable studies were contacted when appropriate to provide more detail about the seizure incidents. RESULTS: Twenty-five seizures were identified. Potential risk factors emerged such as sleep deprivation, polypharmacy, and neurological insult. High-frequency-rTMS was involved in a percentage of the seizures. None of these seizures reported had patients taking bupropion in the literature review. One rTMS-induced seizure was reported from the Food and Drug Administration in a sleep-deprived patient who was concurrently taking bupropion, sertraline, and amphetamine. CONCLUSION: During the consent process, potential risk factors for an rTMS-induced seizure should be carefully screened for and discussed. Data do not support considering concurrent bupropion treatment as contraindication to undergo rTMS

    Brainhack: a collaborative workshop for the open neuroscience community

    Get PDF
    International audienceBrainhack events offer a novel workshop format with participant-generated content that caters to the rapidly growing open neuroscience community. Including components from hackathons and unconferences, as well as parallel educational sessions, Brainhack fosters novel collaborations around the interests of its attendees. Here we provide an overview of its structure, past events, and example projects. Additionally, we outline current innovations such as regional events and post-conference publications. Through introducing Brainhack to the wider neuroscience community, we hope to provide a unique conference format that promotes the features of collaborative, open science
    corecore