613 research outputs found
Ministry emphasises quality of medical training
One proposed mechanism of tumour escape from immune surveillance is tumour up-regulation of the cell surface ligan FasL, whichcan lead to apoptosis of Fas receptor (Fas) positive lymphocytes. Based upon this `coun-- rattack', we have developed a mathematical model inelAin tumour cell--lymphocyte ineA-- ction cell surface expression of Fas/FasL,an d their secreted soluble forms. The model predicts that (a) the production of soluble forms of Fas an d FasL will lead to thedown regulation of theimmun respon --fi (b) matrix metallopr otein se (MMP)ink'PTfiA ion should lead toin'x# sed membran FasLan result in a higher rate of Fas-mediated apoptosis for lymphocytesthan for tumour cells. Recen studieson can--# patient len support for theseprediction s. TheclinP-- l implication are two-fold. Firstly, the use of broad spectrum MMPin'#x tors asan`fi-- n`fi--'` cagenP may be compromised by their adverse e#ecton tumour FasL up-regulation Also, Fas/FasL insL action may havean impact on the outcome ofnA--x`#B onA in immunBB`fiAw`P-- ic trialssin` the finA common pathway of all these approaches is thetran - duction of deathsign-- swithin the tumour cell
Resolving the inner jet structure of 1924-292 with the EVENT HORIZON TELESCOPE
We present the first 1.3 mm (230 GHz) very long baseline interferometry model
image of an AGN jet using closure phase techniques with a four-element array.
The model image of the quasar 1924-292 was obtained with four telescopes at
three observatories: the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in
Hawaii, the Arizona Radio Observatory's Submillimeter Telescope (SMT) in
Arizona, and two telescopes of the Combined Array for Research in
Millimeterwave Astronomy (CARMA) in California in April 2009. With the greatly
improved resolution compared with previous observations and robust closure
phase measurement, the inner jet structure of 1924-292 was spatially resolved.
The inner jet extends to the northwest along a position angle of at
a distance of 0.38\,mas from the tentatively identified core, in agreement with
the inner jet structure inferred from lower frequencies, and making a position
angle difference of with respect to the cm-jet. The size of
the compact core is 0.15\,pc with a brightness temperature of
\,K. Compared with those measured at lower frequencies, the
low brightness temperature may argue in favor of the decelerating jet model or
particle-cascade models. The successful measurement of closure phase paves the
way for imaging and time resolving Sgr A* and nearby AGN with the Event Horizon
Telescope.Comment: 6 pages, 4 figures, accepted for publication in ApJ
The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations
Recent high resolution observations of the Galactic center black hole allow
for direct comparison with accretion disk simulations. We compare
two-temperature synchrotron emission models from three dimensional, general
relativistic magnetohydrodynamic simulations to millimeter observations of Sgr
A*. Fits to very long baseline interferometry and spectral index measurements
disfavor the monochromatic face-on black hole shadow models from our previous
work. Inclination angles \le 20 degrees are ruled out to 3 \sigma. We estimate
the inclination and position angles of the black hole, as well as the electron
temperature of the accretion flow and the accretion rate, to be i=50+35-15
degrees, \xi=-23+97-22 degrees, T_e=(5.4 +/- 3.0)x10^10 K and
Mdot=(5+15-2)x10^-9 M_sun / yr respectively, with 90% confidence. The black
hole shadow is unobscured in all best fit models, and may be detected by
observations on baselines between Chile and California, Arizona or Mexico at
1.3mm or .87mm either through direct sampling of the visibility amplitude or
using closure phase information. Millimeter flaring behavior consistent with
the observations is present in all viable models, and is caused by magnetic
turbulence in the inner radii of the accretion flow. The variability at
optically thin frequencies is strongly correlated with that in the accretion
rate. The simulations provide a universal picture of the 1.3mm emission region
as a small region near the midplane in the inner radii of the accretion flow,
which is roughly isothermal and has \nu/\nu_c ~ 1-20, where \nu_c is the
critical frequency for thermal synchrotron emission.Comment: 14 pages, 17 figures, accepted by Ap
How sketches work: a cognitive theory for improved system design
Evidence is presented that in the early stages of design or composition the
mental processes used by artists for visual invention require a different type of
support from those used for visualising a nearly complete object. Most research
into machine visualisation has as its goal the production of realistic images which
simulate the light pattern presented to the retina by real objects. In contrast sketch
attributes preserve the results of cognitive processing which can be used
interactively to amplify visual thought. The traditional attributes of sketches
include many types of indeterminacy which may reflect the artist's need to be
"vague".
Drawing on contemporary theories of visual cognition and neuroscience this
study discusses in detail the evidence for the following functions which are better
served by rough sketches than by the very realistic imagery favoured in machine
visualising systems.
1. Sketches are intermediate representational types which facilitate the
mental translation between descriptive and depictive modes of representing visual
thought.
2. Sketch attributes exploit automatic processes of perceptual retrieval and
object recognition to improve the availability of tacit knowledge for visual
invention.
3. Sketches are percept-image hybrids. The incomplete physical attributes
of sketches elicit and stabilise a stream of super-imposed mental images which
amplify inventive thought.
4. By segregating and isolating meaningful components of visual
experience, sketches may assist the user to attend selectively to a limited part of a
visual task, freeing otherwise over-loaded cognitive resources for visual thought.
5. Sequences of sketches and sketching acts support the short term episodic
memory for cognitive actions. This assists creativity, providing voluntary control
over highly practised mental processes which can otherwise become stereotyped.
An attempt is made to unite the five hypothetical functions. Drawing on the
Baddeley and Hitch model of working memory, it is speculated that the five
functions may be related to a limited capacity monitoring mechanism which makes
tacit visual knowledge explicitly available for conscious control and manipulation.
It is suggested that the resources available to the human brain for imagining nonexistent
objects are a cultural adaptation of visual mechanisms which evolved in
early hominids for responding to confusing or incomplete stimuli from immediately
present objects and events. Sketches are cultural inventions which artificially
mimic aspects of such stimuli in order to capture these shared resources for the
different purpose of imagining objects which do not yet exist.
Finally the implications of the theory for the design of improved machine
systems is discussed. The untidy attributes of traditional sketches are revealed to
include cultural inventions which serve subtle cognitive functions. However
traditional media have many short-comings which it should be possible to correct
with new technology. Existing machine systems for sketching tend to imitate nonselectively
the media bound properties of sketches without regard to the functions
they serve. This may prove to be a mistake. It is concluded that new system
designs are needed in which meaningfully structured data and specialised imagery
amplify without interference or replacement the impressive but limited creative
resources of the visual brain
Demonstrating the Principles of Aperture Synthesis with the Very Small Radio Telescope
We have developed a set of college-level, table-top labs for teaching the basics of radio interferometry and aperture synthesis. These labs are performed with the Very Small Radio Telescope (VSRT), an interferometer using satellite TV electronics as detectors and compact fluorescent light bulbs as microwave signal sources. The hands-on experience provided by the VSRT in these labs allows students to gain a conceptual understanding of radio interferometry and aperture synthesis without the rigorous mathematical background traditionally required
1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-Variable Emission on Event Horizon Scales
Sagittarius A*, the ~4 x 10^6 solar mass black hole candidate at the Galactic
Center, can be studied on Schwarzschild radius scales with (sub)millimeter
wavelength Very Long Baseline Interferometry (VLBI). We report on 1.3 mm
wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on
Mauna Kea, the ARO/SMT on Mt. Graham in Arizona, and two telescopes of the
CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator
1924-292 were observed over three consecutive nights, and both sources were
clearly detected on all baselines. For the first time, we are able to extract
1.3 mm VLBI interferometer phase information on Sgr A* through measurement of
closure phase on the triangle of baselines. On the third night of observing,
the correlated flux density of Sgr A* on all VLBI baselines increased relative
to the first two nights, providing strong evidence for time-variable change on
scales of a few Schwarzschild radii. These results suggest that future VLBI
observations with greater sensitivity and additional baselines will play a
valuable role in determining the structure of emission near the event horizon
of Sgr A*.Comment: 8 pages, submitted to ApJ
Sagittarius A* Accretion Flow and Black Hole Parameters from General Relativistic Dynamical and Polarized Radiative Modeling
We obtain estimates of Sgr A* accretion flow and black hole parameters by
fitting polarized sub-mm observations with spectra computed using
three-dimensional (3D) general relativistic (GR) magnetohydrodynamical (MHD)
(GRMHD) simulations. Observations are compiled from averages over many epochs
from reports in 29 papers for estimating the mean fluxes Fnu, linear
polarization (LP) fractions, circular polarization (CP) fractions, and electric
vector position angles (EVPAs). GRMHD simulations are computed with
dimensionless spins a_*=0,0.5,0.7,0.9,0.98 over a 20,000M time interval. We
perform fully self-consistent GR polarized radiative transfer using our new
code to explore the effects of spin a_*, inclination angle \theta, position
angle (PA), accretion rate Mdot, and electron temperature Te (Te is reported
for radius 6M). By fitting the mean sub-mm fluxes and LP/CP fractions, we
obtain estimates for these model parameters and determine the physical effects
that could produce polarization signatures. Our best bet model has a_*=0.5,
\theta=75deg, PA=115deg, Mdot=4.6*10^{-8}M_Sun/year, and Te=3.1*10^10K at 6M.
The sub-mm CP is mainly produced by Faraday conversion as modified by Faraday
rotation, and the emission region size at 230GHz is consistent with the VLBI
size of 37microas. Across all spins, model parameters are in the ranges
\theta=42deg-75deg, Mdot=(1.4-7.0)*10^{-8}M_Sun/year, and Te=(3-4)*10^10K.
Polarization is found both to help differentiate models and to introduce new
observational constraints on the effects of the magnetic field that might not
be fit by accretion models so-far considered.Comment: 19 pages, 11 figures, accepted to Ap
- …
