467 research outputs found
Optimal estimation of direction in regression models with large number of parameters
We consider the problem of estimating the optimal direction in regression by maximizing the probability that the scalar product between the vector of unknown parameters and the chosen direction is positive. The estimator maximizing this probability is simple in form, and is especially useful for situations where the number of parameters is much larger than the number of observations. We provide examples which show that this estimator is superior to state-of-the-art methods such as the LASSO for estimating the optimal direction
Global optimization for structured low rank approximation
In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank
approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem
of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel
structure. Unlike many other methods described in the literature the family of algorithms we propose has the property of
guaranteed convergence
Recommended from our members
Emergency endovascular management of peripheral artery aneurysms and pseudoaneurysms - a review.
Endovascular stenting has been successfully employed in the management of aortic aneurysms; however, its use in managing peripheral arterial conditions remains questionable. We review the utility of endovascular technique in the management of peripheral arterial conditions like aneurysms, pseudoaneurysms and arterio-venous fistulas in the emergency setting. Though long term data about graft patency rates is not yet available, the endovascular approach appears to be a useful minimally invasive technique in situations where open repair is either difficult or not feasible.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture.
BACKGROUND: Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. METHOD: Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. RESULTS: The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R(2) = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). CONCLUSION: Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.This is the author accepted manuscript. The final version is available from Schattauer via http://dx.doi.org/10.1160/TH15-09-071
Recommended from our members
Role of biomechanical forces in the natural history of coronary atherosclerosis.
Atherosclerosis remains a major cause of morbidity and mortality worldwide, and a thorough understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not uniformly distributed in the vascular tree. Experimental and clinical data highlight that biomechanical forces, including wall shear stress (WSS) and plaque structural stress (PSS), have an important role in the natural history of coronary atherosclerosis. Endothelial cell function is heavily influenced by changes in WSS, and longitudinal animal and human studies have shown that coronary regions with low WSS undergo increased plaque growth compared with high WSS regions. Local alterations in WSS might also promote transformation of stable to unstable plaque subtypes. Plaque rupture is determined by the balance between PSS and material strength, with plaque composition having a profound effect on PSS. Prospective clinical studies are required to ascertain whether integrating mechanical parameters with medical imaging can improve our ability to identify patients at highest risk of rapid disease progression or sudden cardiac events.This work was supported by the British Heart Foundation (FS/13/33/30168), Heart Research UK (RG2638/14/16), the Cambridge NIHR Biomedical Research Centre, and the BHF Cambridge Centre for Research Excellence.This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/nrcardio.2015.203
Understanding and improving the care pathway for children with autism
Purpose: To describe current care pathways for children with autism including enablers and barriers, as experienced by health professionals, education professionals, and families in South Wales, UK.
Design/methodology/approach: A mixed-methods approach using focus group discussions, creative writing workshops and visualisation using rich pictures.
Findings: The experiences of the care pathways differed significantly across the three groups. Health professionals described the most rigidly-structured pathways, with clear entry points and outcomes. Education professionals and parents described more complex and confusing pathways, with parents assuming the responsibility of coordinating the health and education activity in a bid to link the two independent pathways. All three groups identified enablers, although these differed across the groups. The barriers were more consistent across the groups (e.g. poor communication, missing information, lack of transparency, limited post diagnosis services and access to services based on diagnosis rather than need).
Practical implications: This research could inform the design of new services which are premised on multi-agency and multi-disciplinary working to ensure children with ASD receive joined up services and support.
Originality/value: Although this study did not represent all professional groups or all experiences of autism, we examined three different perspectives of the ASD pathway. In addition, we triangulated high-level process maps with rich pictures and creative writing exercises, which allowed us to identify specific recommendations to improve integration and reduce duplication and gaps in provision
Local blood pressure associates with the degree of luminal stenosis in patients with atherosclerotic disease in the middle cerebral artery.
The mechanism underlying atherosclerotic ischemic events within the middle cerebral artery (MCA) is unclear. High structural stress induced by blood pressure might be a potential aetiology as plaque rupture occurs when such mechanical loading exceeds its material strength. To perform reliable analyses quantifying the mechanical loading within a plaque, the local blood pressure is needed. However, data on MCA blood pressure is currently lacking. In this study, the arterial pressure proximal to the stenotic site in the MCA was measured in 15 patients scheduled for intervention. The relationships between these local measurements and pre-intervention and intra-intervention non-invasive arm measurements were assessed. The impact of luminal stenosis on the local blood pressure was quantified. Compared with the pre-intervention arm measurement, the intra-intervention arm pressure decreased significantly by 23.9 ± 11.8 and 9.3 ± 14.7 % at diastole and systole, respectively. The pressure proximal to the stenosis was much lower than the pre-intervention arm measurement (diastole: 65.3 ± 15.7 vs 82.0 ± 9.7, p < 0.01; systole: 81.1 ± 15.9 vs 133.9 ± 18.7, p < 0.01; unit: mmHg). The systolic pressure in the MCA in patients with stenosis <70 % (n = 6) was significantly higher than the value in patients with stenosis ≥70 % (n = 9) (92.0 ± 7.3 vs 73.9 ± 16.1, p = 0.02; unit: mmHg), as was pulse pressure (22.8 ± 6.4 vs 11.1 ± 8.3, p = 0.01; unit: mmHg). However, diastolic pressure remained unaffected (69.2 ± 9.3 vs 62.8 ± 19.0, p = 0.58; unit: mmHg). In conclusion, the obtained results are helpful in understanding the local hemodynamic environment modulated by the presence of atherosclerosis. The local pressure measurements can be used for computational analysis to quantify the critical mechanical condition within an MCA lesion.Emerging Frontier Technology Joint Research Program of Shanghai Municipal Hospital, China (Grant ID: SHDC12013110), National Natural Science Foundation of China (Grant ID: 31470910), National Institute for Health Research Cambridge Biomedical Research CentreThis is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12938-016-0202-
- …
