693 research outputs found
Future Missions to Titan: Scientific and Engineering Challenges
Saturn’s largest moon, Titan, has been an enigma at every stage of its exploration. For three decades after the hazy atmosphere was discovered from the ground in the 1940s, debate ensued over whether it was a thin layer of methane or a dense shield of methane and nitrogen. Voyager 1 settled the matter in favor of the latter in 1980, but the details of the thick atmosphere discovered raised even more intriguing questions about the nature of the hidden surface, and the sources of resupply of methane to the atmosphere. The simplest possibility, that an ocean of methane and its major photochemical product ethane might cover the globe, was cast in doubt by Earth-based radar studies and then eliminated by Hubble Space Telescope and adaptive optics imaging in the near-infrared from large ground-based telescopes in the 1990s. These data, however, did not reveal the complexity of the surface that Cassini-Huygens would uncover beginning in 2004. A hydrological cycle appears to exist in which methane (in concert with ethane in some processes) plays the role on Titan that water plays on Earth.
Channels likely carved by liquid methane and/or ethane, lakes and seas of these materials—some rivaling or exceeding North America’s Great Lakes in size—vast equatorial dune fields of complex organics made high in the atmosphere and shaped by wind, and intriguing hints of geologic activity suggest a world with a balance of geologic and atmospheric processes that is the solar system’s best analogue to Earth. Deep underneath Titan’s dense atmosphere and active, diverse surface is an interior ocean discovered by Cassini and thought to be largely composed of liquid water.
Cassini-Huygens has provided spectacular data and has enabled us to glimpse the mysterious surface of Titan. However the mission will leave us with many questions that require future missions to answer. These include determining the composition of the surface and the geographic distribution of various organic constituents. Key questions remain about the ages of surface features, specifically whether cryovolcanism and tectonism are actively ongoing or are relics of a more active past. Ammonia, circumstantially suggested to be present by a variety of different kinds of Cassini-Huygens data, has yet to be seen. Is methane out-gassing from the interior or ice crust today? Are the lakes fed primarily by rain or underground methane-ethane aquifers (more properly, “alkanofers”) and how often have heavy methane rains come to the equatorial region? We should investigate whether Titan’s surface supported vaster seas of methane in the past, and whether complex self-organizing chemical systems have come and gone in the water volcanism, or even exist in exotic form today in the high latitude lakes. The presence of a magnetic field has yet to be established. A large altitude range in the atmosphere, from 400–900 km in altitude, will remain poorly explored after Cassini. Much remains to be understood about seasonal changes of the atmosphere at all levels, and the long-term escape of constituents to space.
Other than Earth, Titan is the only world in our solar system known to have standing liquids and an active “hydrologic cycle” with clouds, rains, lakes and streams. The dense atmosphere and liquid lakes on Titan’s surface can be explored with airborne platforms and landed probes, but the key aspect ensuring the success of future investigations is the conceptualization and design of instruments that are small enough to fit on the landed probes and airborne platforms, yet sophisticated enough to conduct the kinds of detailed chemical (including isotopic), physical, and structural analyses needed to investigate the history and cycling of the organic materials. In addition, they must be capable of operating at cryogenic temperatures while maintaining the integrity of the sample throughout the analytic process. Illuminating accurate chemistries also requires that the instruments and tools are not simultaneously biasing the measurements due to localized temperature increases. While the requirements for these techniques are well understood, their implementation in an extremely low temperature environment with limited mass, power and volume is acutely challenging. No such instrument systems exist today.
Missions to Titan are severely limited in both mass and power because spacecraft have to travel over a billion miles to get there and require a large amount of fuel, not only to reach Titan, but to maintain the ability to maneuver when they arrive. Landed missions have additional limitations, in that they must be packaged in a sealed aeroshell for entry into Titan’s atmosphere. Increases in landed mass and volume translate to increased aeroshell mass and size, requiring even more fuel for delivery to Titan. Nevertheless, missions during which such systems and instruments could be employed range from Discovery and New Frontiers class in situ probes that might be launched in the next decade, to a full-up Flagship class mission anticipated to follow the Europa Jupiter System Mission. Capitalizing on recent breakthroughs in cryo-technologies and smart materials fabrication, we developed conceptual designs of sample acquisition systems and instruments capable of in situ operation under low temperature environments.
The study included two workshops aimed at brainstorming and actively discussing a broad range of ideas and associated challenges with landing instruments on Titan, as well as more focused discussions during the intervening part of the study period. The workshops each lasted ~4 days (Monday-Thursday/Friday), included postdoctoral fellows and students in addition to the core team members, and generated active engagement from the Caltech and JPL team participants, as well as from the outside institutions. During the workshops, new instruments and sampling methodologies were identified to handle the challenges of characterizing everything from small molecules in Titan’s upper atmosphere to gross mixtures of high molecular weight complex organics in condensed phases, including atmospheric aerosols and “organic sand” in dunes, to highly dilute components in ices and lakes. To enable these advances in cryogenic instrumentation breakthroughs in a wide range of disciplines, including electronics, chemical and mechanical engineering, and materials science were identified
Fast Objective Coupled Planar Illumination Microscopy
Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. This potential is especially poignant for neuroscience applications due to the fact that interactions between neurons transpire over mere milliseconds within tissue volumes spanning hundreds of cubic microns. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We begin by reviewing the optical principles underlying light sheet fluorescence microscopy and the origin of these rate bottlenecks. We present an analysis leading us to the conclusion that Objective Coupled Planar Illumination (OCPI) microscopy is a particularly promising technique for recording the activity of large populations of neurons at high sampling rate.
We then present speed-optimized OCPI microscopy, the first fast light sheet technique to avoid compromising image quality or photon efficiency. We enact two strategies to develop the fast OCPI microscope. First, we devise a set of optimizations that increase the rate of the volume scanning system to 40 Hz for volumes up to 700 microns thick. Second, we introduce Multi-Camera Image Sharing (MCIS), a technique to scale imaging rate by incorporating additional cameras. MCIS can be applied not only to OCPI but to any widefield imaging technique, circumventing the limitations imposed by the camera. Detailed design drawings are included to aid in dissemination to other research groups.
We also demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced motion artifact. We recommend a new preprocessing step to remove the artifact through filtering. This step requires a minimal sampling rate of 15 Hz, and we expect it to become a standard procedure in zebrafish imaging pipelines.
In the last chapter we describe essential computational considerations for controlling a fast OCPI microscope and processing the data that it generates. We introduce a new image processing pipeline developed to maximize computational efficiency when analyzing these multi-terabyte datasets, including a novel calcium imaging deconvolution algorithm. Finally we provide a demonstration of how combined innovations in microscope hardware and software enable inference of predictive relationships between neurons, a promising complement to more conventional correlation-based analyses
Dinner at Dan
In Dinner at Dan, Jonathan S. Greer provides biblical and archaeological evidence for sacred feasting at the Levantine site of Tel Dan from the late 10th century - mid-8th century BCE. Biblical texts are argued to reflect a Yahwistic and traditional religious context for these feasts and a fresh analysis of previously unpublished animal bone, ceramic, and material remains from the temple complex at Tel Dan sheds light on sacrificial prescriptions, cultic realia, and movements within this sacred space. Greer concludes that feasts at Dan were utilized by the kings of Northern Israel initially to unify tribal factions and later to reinforce distinct social structures as a society strove to incorporate its tribal past within a monarchic framework
Statistics of Dislocation Slip Avalanches in Nanosized Single Crystals Show Tuned Critical Behavior Predicted by a Simple Mean Field Model
We show that slowly sheared metallic nanocrystals deform via discrete strain bursts (slips), whose size distributions follow power laws with stress-dependent cutoffs. We show for the first time that plasticity reflects tuned criticality, by collapsing the stress-dependent slip-size distributions onto a predicted scaling function. Both power-law exponents and scaling function agree with mean-field theory predictions. Our study of 7 materials and 2 crystal structures, at various deformation rates, stresses, and crystal sizes down to 75 nm, attests to the universal characteristics of plasticity
Recommended from our members
Fog2 is required for normal diaphragm and lung development in mice and humans
Congenital diaphragmatic hernia and other congenital diaphragmatic defects are associated with significant mortality and morbidity in neonates; however, the molecular basis of these developmental anomalies is unknown. In an analysis of E18.5 embryos derived from mice treated with N-ethyl-N-nitrosourea, we identified a mutation that causes pulmonary hypoplasia and abnormal diaphragmatic development. Fog2 (Zfpm2) maps within the recombinant interval carrying the N-ethyl-N-nitrosourea-induced mutation, and DNA sequencing of Fog2 identified a mutation in a splice donor site that generates an abnormal transcript encoding a truncated protein. Human autopsy cases with diaphragmatic defect and pulmonary hypoplasia were evaluated for mutations in FOG2. Sequence analysis revealed a de novo mutation resulting in a premature stop codon in a child who died on the first day of life secondary to severe bilateral pulmonary hypoplasia and an abnormally muscularized diaphragm. Using a phenotype-driven approach, we have established that Fog2 is required for normal diaphragm and lung development, a role that has not been previously appreciated. FOG2 is the first gene implicated in the pathogenesis of nonsyndromic human congenital diaphragmatic defects, and its necessity for pulmonary development validates the hypothesis that neonates with congenital diaphragmatic hernia may also have primary pulmonary developmental abnormalities
Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*
We report results from very long baseline interferometric (VLBI) observations
of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230
GHz). The observations were performed in 2013 March using six VLBI stations in
Hawaii, California, Arizona, and Chile. Compared to earlier observations, the
addition of the APEX telescope in Chile almost doubles the longest baseline
length in the array, provides additional {\it uv} coverage in the N-S
direction, and leads to a spatial resolution of 30 as (3
Schwarzschild radii) for Sgr A*. The source is detected even at the longest
baselines with visibility amplitudes of 4-13% of the total flux density.
We argue that such flux densities cannot result from interstellar refractive
scattering alone, but indicate the presence of compact intrinsic source
structure on scales of 3 Schwarzschild radii. The measured nonzero
closure phases rule out point-symmetric emission. We discuss our results in the
context of simple geometric models that capture the basic characteristics and
brightness distributions of disk- and jet-dominated models and show that both
can reproduce the observed data. Common to these models are the brightness
asymmetry, the orientation, and characteristic sizes, which are comparable to
the expected size of the black hole shadow. Future 1.3 mm VLBI observations
with an expanded array and better sensitivity will allow a more detailed
imaging of the horizon-scale structure and bear the potential for a deep
insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
Mortality According to CD4 Count at Start of Combination Antiretroviral Therapy Among HIV-infected Patients Followed for up to 15 Years After Start of Treatment: Collaborative Cohort Study.
BACKGROUND: CD4 count at start of combination antiretroviral therapy (ART) is strongly associated with short-term survival, but its association with longer-term survival is less well characterized.
METHODS: We estimated mortality rates (MRs) by time since start of ART (<0.5, 0.5-0.9, 1-2.9, 3-4.9, 5-9.9, and ≥10 years) among patients from 18 European and North American cohorts who started ART during 1996-2001. Piecewise exponential models stratified by cohort were used to estimate crude and adjusted (for sex, age, transmission risk, period of starting ART [1996-1997, 1998-1999, 2000-2001], and AIDS and human immunodeficiency virus type 1 RNA at baseline) mortality rate ratios (MRRs) by CD4 count at start of ART (0-49, 50-99, 100-199, 200-349, 350-499, ≥500 cells/µL) overall and separately according to time since start of ART.
RESULTS: A total of 6344 of 37 496 patients died during 359 219 years of follow-up. The MR per 1000 person-years was 32.8 (95% confidence interval [CI], 30.2-35.5) during the first 6 months, declining to 16.0 (95% CI, 15.4-16.8) during 5-9.9 years and 14.2 (95% CI, 13.3-15.1) after 10 years' duration of ART. During the first year of ART, there was a strong inverse association of CD4 count at start of ART with mortality. This diminished over the next 4 years. The adjusted MRR per CD4 group was 0.97 (95% CI, .94-1.00; P = .054) and 1.02 (95% CI, .98-1.07; P = .32) among patients followed for 5-9.9 and ≥10 years, respectively.
CONCLUSIONS: After surviving 5 years of ART, the mortality of patients who started ART with low baseline CD4 count converged with mortality of patients with intermediate and high baseline CD4 counts
Mortality according to CD4 count at start of combination antiretroviral therapy among HIV-infected patients followed for up to 15 years after start of treatment:collaborative cohort study
Background. CD4 count at start of combination antiretroviral therapy (ART) is strongly associated with short-term survival, but its association with longer-term survival is less well characterised. Methods. We estimated mortality rates (MR) by time since start of ART (<0.5, 0.5-0.9, 1-2.9, 3-3.9, 5-9.9 and ≥10 years) among patients from 18 European and North American cohorts who started ART during 1996-2001. Piecewise exponential models stratified by cohort were used to estimate crude and adjusted (for sex, age, transmission risk, period of starting ART [1996-7, 1998-9, 2000-1], AIDS and HIV-1 RNA at baseline) mortality rate ratios (MRR) by CD4 count at start of ART (0-49, 50-99, 100-199, 200-349, 350-499, ≥500 cells/μL) overall and separately according to time since start of ART. Results. 6,344 of 37,496 patients died during 359,219 years of follow up. The MR per 1000 person-years was 32.8 (95% CI 30.2-35.5) during the first 6 months, declining to 16.0 (15.4, 16.8) during 5-9.9 years and 14.2 (13.3-15.1) after 10 years duration of ART. During the first year of ART there was a strong inverse association of CD4 count at start of ART with mortality. This diminished over the next 4 years. The adjusted MRR per CD4 group were 0.97 (0.94-1.00), p=0.054 and 1.02 (0.98-1.07), p=0.32 among patients followed for 5-9.9 and >10 years respectively. Conclusions. After surviving five years of ART, the mortality of patients who started ART with low baseline CD4 count converged with mortality of patients with intermediate and high baseline CD4 counts. </p
Persistent Asymmetric Structure of Sagittarius A* on Event Horizon Scales
The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing
target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm
emission from this source on angular scales comparable to that of the general
relativistic shadow. Previous EHT observations have used visibility amplitudes
to infer the morphology of the millimeter-wavelength emission. Potentially much
richer source information is contained in the phases. We report on 1.3 mm phase
information on Sgr A* obtained with the EHT on a total of 13 observing nights
over 4 years. Closure phases, the sum of visibility phases along a closed
triangle of interferometer baselines, are used because they are robust against
phase corruptions introduced by instrumentation and the rapidly variable
atmosphere. The median closure phase on a triangle including telescopes in
California, Hawaii, and Arizona is nonzero. This result conclusively
demonstrates that the millimeter emission is asymmetric on scales of a few
Schwarzschild radii and can be used to break 180-degree rotational ambiguities
inherent from amplitude data alone. The stability of the sign of the closure
phase over most observing nights indicates persistent asymmetry in the image of
Sgr A* that is not obscured by refraction due to interstellar electrons along
the line of sight.Comment: 11 pages, accepted to Ap
- …
