130 research outputs found

    Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments

    Full text link
    A spectrogram of a ship wake is a heat map that visualises the time-dependent frequency spectrum of surface height measurements taken at a single point as the ship travels by. Spectrograms are easy to compute and, if properly interpreted, have the potential to provide crucial information about various properties of the ship in question. Here we use geometrical arguments and analysis of an idealised mathematical model to identify features of spectrograms, concentrating on the effects of a finite-depth channel. Our results depend heavily on whether the flow regime is subcritical or supercritical. To support our theoretical predictions, we compare with data taken from experiments we conducted in a model test basin using a variety of realistic ship hulls. Finally, we note that vessels with a high aspect ratio appear to produce spectrogram data that contains periodic patterns. We can reproduce this behaviour in our mathematical model by using a so-called two-point wavemaker. These results highlight the role of wave interference effects in spectrograms of ship wakes.Comment: 14 pages, 7 figure

    Multipotent adult progenitor cells sustain function of ischemic limbs in mice

    Get PDF
    Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP), and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients

    Mathematical models and time-frequency heat maps for surface gravity waves generated by thin ships

    Full text link
    Recent research suggests that studying the time-frequency response of ship wave signals has potential to shed light on a range of applications, such as inferring the dynamical and geometric properties of a moving vessel based on the surface elevation data detected at a single point in space. We continue this line of research here with a study of mathematical models for thin ships using standard Wigley hulls and Wigley transom-stern hulls as examples. Mathematical models of varying sophistication are considered. These include basic minimal models which use applied pressure distributions as proxies for the ship hull. The more complicated models are Michell's thin ship theory and the Hogner model, both of which explicitly take into account the shape of the hull. We outline a methodology for carefully choosing the form and parameter values in the minimal models such that they reproduce the key features of the more complicated models in the time-frequency domain. For example, we find that a two-pressure model is capable of producing wave elevation signals that have a similar time-frequency profile as that for Michell's thin ship theory applied to the Wigley hull, including the crucially important features caused by interference between waves created at the bow and stern of the ship. One of the key tools in our analysis is the spectrogram, which is a heat-map visualisation in the time-frequency domain. Our work here extends the existing knowledge on the topic of spectrograms of ship waves. The theoretical results in this study are supported by experimental data collected in a towing tank at the Australian Maritime College using model versions of the standard Wigley hulls and Wigley transom-stern hulls

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19p13.1 Breast–Ovarian Cancer Susceptibility Locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 X 10-20), ER-negative BC (P = 1.1 X 10-13), BRCA1 -associated BC (P = 7.7 X 10-16) and triple negative BC (P-diff = 2 X 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 X 10-3) and ABHD8 (P \u3c 2 X 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8 , and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3\u27-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Transcending Sovereignty: Locating Indigenous Peoples in Transboundary Water Law

    Full text link

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    Safety and Effectiveness of Mentor’s MemoryGel Implants at 6 Years

    Full text link

    Safety and Effectiveness of Mentor’s MemoryGel Implants at 6 Years

    Full text link
    corecore