17,251 research outputs found
Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all 3 aerosol-injection scenarios, though there are a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature-response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide, which has the added benefit of being well modelled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.The authors would like to thank Valentina Aquila for supplying AVHRR and SAGE data, and to Peter Cox, Angus Ferraro, David Keith and Alan Robock for helpful discussions. A. C. Jones was supported by a Met Office/NERC CASE (ref. 580 009 183) PhD studentship; J. M. Haywood and A. Jones were supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)
Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model
A causal link has been invoked between inter-hemispheric albedo, cross-equatorial energy transport and the double-IntertropicalConvergence Zone (ITCZ) bias in climate models. Southern Ocean cloud biases are a major determinant of inter-hemispheric albedo biases in many models, including HadGEM2-ES, a fully coupled model with a dynamical ocean. In this study, targeted albedo corrections are applied to explore the dynamical response to artificially reducing these biases. The Southern Hemisphere jet increases in strength in response to the increased tropical-extratropical temperature gradient, with increased energy transport into the mid-latitudes in the atmosphere, but no improvement is observed in the double-ITCZ bias or atmospheric cross-equatorial energy transport. The majority of the adjustment in energy transport in the tropics is achieved in the ocean, with the response further limited to the Pacific Ocean. As a result, the frequently argued teleconnection between the Southern Ocean and tropical precipitation biases is muted. Further experiments in which tropical longwave biases are also reduced do not yield improvement in the representation of the tropical atmosphere. These results suggest that the dramatic improvements in tropical precipitation that have been shown in previous studies may be a function of the lack of dynamical ocean and/or the simplified hemispheric albedo bias corrections applied in that work. It further suggests that efforts to correct the double ITCZ problem in coupled models that focus on large-scale energetic controls will prove fruitless without improvements in the representation of atmospheric processes.MKH, MC and JMH were supported by the Natural Environment Research Council/Department for International Development via the Future Climates for Africa (FCFA) funded project ’Improving Model Processes for African Climate’ (IMPALA, NE/M017265/1). JMH and AJ were supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)
On the effect of the inter-lamellar behaviour in a finite element model of the annulus fibrosus
A methodology for the generation and non-destructive characterisation of transverse fractures in long bones
Long bone fractures are common and although treatments are highly effective in most cases, it is challenging to achieve successful repair for groups such as open and periprosthetic fractures. Previous biomechanical studies of fracture repair, including computer and experimental models, have simplified the fracture with a flat geometry or a gap, and there is a need for a more accurate fracture representation to mimic the situation in-vivo. The aims of this study were to develop a methodology for generating repeatable transverse fractures in long bones in-vitro and to characterise the fracture surface using non-invasive computer tomography (CT) methods. Ten porcine femora were fractured in a custom-built rig under high-rate loading conditions to generate consistent transverse fractures (angle to femoral axis < 30 degrees). The bones were imaged using high resolution peripheral quantitative CT (HR-pQCT). A method was developed to extract the roughness and form profiles of the fracture surface from the image data using custom code and Guassian filters. The method was tested and validated using artificially generated waveforms. The results revealed that the smoothing algorithm used in the script was robust but the optimum kernel size has to be considered
The solid state structures of the high and low temperature phases of dimethylcadmium
X-ray structures and DFT calculations show that the HT phase is of Me2Cd is two-dimensionally disordered, while the LT phase is ordered. Both phases contain linearly coordinated cadmium atoms; methyl groups are staggered in the HT form and eclipsed in the LT-form.</p
Home based exercise programme for knee pain and knee osteoarthritis: randomised controlled trial
Objectives To determine whether a home based
exercise programme can improve outcomes in
patients with knee pain.
Design Pragmatic, factorial randomised controlled
trial of two years' duration.
Setting Two general practices in Nottingham.
Participants 786 men and women aged >45 years
with self reported knee pain.
Interventions Participants were randomised to four
groups to receive exercise therapy, monthly telephone
contact, exercise therapy plus telephone contact, or no
intervention. Patients in the no intervention and
combined exercise and telephone groups were
randomised to receive or not receive a placebo health
food tablet.
Main outcome measures Primary outcome was self
reported score for knee pain on the Western Ontario
and McMaster universities (WOMAC) osteoarthritis
index at two years. Secondary outcomes included
knee specific physical function and stiffness (scored on
WOMAC index), general physical function (scored on
SF36 questionnaire), psychological outlook (scored
on hospital anxiety and depression scale), and
isometric muscle strength.
Results 600 (76.3%) participants completed the study.
At 24 months, highly significant reductions in knee
pain were apparent for the pooled exercise groups
compared with the nonexercise groups (mean
difference –0.82, 95% confidence interval –1.3 to
–0.3). Similar improvements were observed at 6, 12,
and 18 months. Regular telephone contact alone did
not reduce pain. The reduction in pain was greater
the closer patients adhered to the exercise plan.
Conclusions A simple home based exercise
programme can significantly reduce knee pain. The
lack of improvement in patients who received only
telephone contact suggests that improvements are not
just due to psychosocial effects because of contact
with the therapist
Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite
Experimental and numerical analysis of a woven composite were performed in order to assess the effect of yarn path and layer shift variability on properties of the composite. Analysis of the geometry of a 12K carbon fibre 2×2 twill weave at the meso- and macro-scales showed the prevalence of the yarn path variations at the macro-scale over the meso-scale variations. Numerical analysis of yarn path variability showed that it is responsible for a Young’s modulus reduction of 0.5% and CoV of 1% which makes this type of variability in the selected reinforcement almost insignificant for an elastic analysis. Finite element analysis of damage propagation in laminates with layer shift showed good agreement with the experiments. Both numerical analysis and experiments showed that layer shift has a strong effect on the shape of the stress-strain curve. In particular, laminates with no layer shift tend to exhibit a kink in the stress-strain curve which was attributed solely to the layer configuration
Investigating hyper-vigilance for social threat of lonely children
The hypothesis that lonely children show hypervigilance for social threat was examined in a series of three studies that employed different methods including advanced eye-tracking technology. Hypervigilance for social threat was operationalized as hostility to ambiguously motivated social exclusion in a variation of the hostile attribution paradigm (Study 1), scores on the Children’s Rejection-Sensitivity Questionnaire (Study 2), and visual attention to socially rejecting stimuli (Study 3). The participants were 185 children (11 years-7 months to 12 years-6 months), 248 children (9 years-4 months to 11 years-8 months) and 140 children (8 years-10 months to 12 years-10 months) in the three studies, respectively. Regression analyses showed that, with depressive symptoms covaried, there were quadratic relations between loneliness and these different measures of hypervigilance to social threat. As hypothesized, only children in the upper range of loneliness demonstrated elevated hostility to ambiguously motivated social exclusion, higher scores on the rejection sensitivity questionnaire, and disengagement difficulties when viewing socially rejecting stimuli. We found that very lonely children are hypersensitive to social threat
- …
