9,552 research outputs found
Low-Noise Amplification of a Continuous Variable Quantum State
We present an experimental realization of a low-noise, phase-insensitive
optical amplifier using a four-wave mixing interaction in hot Rb vapor.
Performance near the quantum limit for a range of amplifier gains, including
near unity, can be achieved. Such low-noise amplifiers are essential for
so-called quantum cloning machines and are useful in quantum information
protocols. We demonstrate that amplification and ``cloning'' of one half of a
two-mode squeezed state is possible while preserving entanglement.Comment: To appear in Physical Review Letters July 3rd. 4 pages, 4 figure
Challenging the foundations of the clinical model of foot function : further evidence that the Root model assessments fail to appropriately classify foot function
Background
The Root model of normal and abnormal foot function remains the basis for clinical foot orthotic practice globally. Our aim was to investigate the relationship between foot deformities and kinematic compensations that are the foundations of the model.
Methods
A convenience sample of 140 were screened and 100 symptom free participants aged 18-45 years were invited to participate. The static biomechanical assessment described by the Root model was used to identify five foot deformities. A 6 segment foot model was used to measure foot kinematics during gait. Statistical tests compared foot kinematics between feet with and without foot deformities and correlated the degree of deformity with any compensatory motions.
Results
None of the deformities proposed by the Root model were associated with distinct differences in foot kinematics during gait when compared to those without deformities or each other. Static and dynamic parameters were not correlated.
Conclusions
Taken as part of a wider body of evidence, the results of this study have profound implications for clinical foot health practice. We believe that the assessment protocol advocated by the Root model is no longer a suitable basis for professional practice. We recommend that clinicians stop using sub-talar neutral position during clinical assessments and stop assessing the non-weight bearing range of ankle dorsiflexion, first ray position and forefoot alignments and movement as a means of defining the associated foot deformities. The results question the relevance of the Root assessments in the prescription of foot orthoses
Milk yield of Holstein-Friesian and Jersey x Holstein-Friesian cows supplemented with canola meal and cracked lupins
Milk yield is a key selection trait in dairy cows. During the course of lactation, milk yield follows a typical curvilinear pattern characterized by an initial increase immediately after calving, a rise to peak before an eventual decline. Cows in mid-lactation are typically in the decline phase and would require supplementation to ensure persistency in milk yield, particularly during summer when pasture availability is limited. This study evaluated the milk yield responses of purebred and
crossbred dairy cows to two levels (1 or 2 kg/cow/day) of canola meal or cracked lupins supplementation in a pasture-based production system. Fifty Holstein-Friesian (HF) and Jersey x Holstein-Friesian (JHF) dairy cows (10 unsupplemented control and 40 supplemented) were randomly assigned to treatment groups after balancing for initial milk yield, BCS and days in milk (mean initial milk yield, body weight and body condition scores were 122.5 ± 12.1 litres/d, 352.6 ± 31 kg, and 2.5 respectively). A 2 x 2 x 2 balanced factorial experimental design representing 2
breeds, 2 supplements and 2 feeding levels was utilized. All cows had ad libitum access to the basal diet of barley and ryegrass while supplemented cows had three weeks of adjustment before the 12 weeks of feeding trial commenced. All cows were milked twice daily and milk yield individually recorded automatically at milking. Data were tested for significance by fitting the fixed effects of breed, supplement, feeding level and their first order interactions using mixed model procedures in SAS with cow and days in milk as random effects. Overall differences between treatment means were declared significant at P0.26). Supplementing with lupins at 1kg/cow/day gave the best milk yield response and would be a far cheaper option for supplementing mid-lactation cows than canola
Reconstruction of Lamb weather type series back to the eighteenth century
The Lamb weather type series is a subjective catalogue of daily atmospheric patterns and flow directions over the British Isles, covering the period 1861–1996. Based on synoptic maps, meteorologists have empirically classified surface pressure patterns over this area, which is a key area for the progression of Atlantic storm tracks towards Europe. We apply this classification to a set of daily pressure series from a few stations from western Europe, in order to reconstruct and to extend this daily weather type series back to 1781. We describe a statistical framework which provides, for each day, the weather types consistent enough with the observed pressure pattern, and their respective probability. Overall, this technique can correctly reconstruct almost 75% of the Lamb daily types, when simplified to the seven main weather types. The weather type series are described and compared to the original series for the winter season only. Since the low frequency variability of synoptic conditions is directly related to the North Atlantic Oscillation (NAO), we derive from the weather type series an NAO index for winter. An interesting feature is a larger multidecadal variability during the nineteenth century than during the twentieth century
Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration
Inorganic/organic sol–gel hybrids have nanoscale co-networks of organic and inorganic components that give them the unique potential of tailored mechanical properties and controlled biodegradation in tissue engineering applications. Here, silica/chitosan hybrid scaffolds with oriented structures were fabricated through the sol–gel method with a unidirectional freeze casting process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) was used to obtain covalent inorganic/organic coupling. Process variables were investigated such as cooling rate, GPTMS and inorganic content, which can be used to tailor the mechanical properties and hybrid chemical coupling. Structural characterization and dissolution tests confirmed the covalent cross-linking of the chitosan and the silica network in hybrids. The scaffolds had a directional lamellar structure along the freezing direction and a cellular morphology perpendicular to the freezing direction. Compression testing showed that the scaffolds with 60 wt% organic were flexible and elastomeric perpendicular to the freezing direction whilst behaving in an elastic-brittle fashion parallel to the freezing direction. The compressive strengths are about one order of magnitude higher in the latter direction reaching values of the order of 160 kPa. This behaviour provides potential for clinicians to be able to squeeze the materials to fit tissue defect sites while providing some mechanical support from the other direction
Flogging tired horses: who wants whipping and who would walk away if whipping horses were withheld?
Recent studies have cast doubt on the effectiveness of whipping horses during races and this has led to questions concerning its continuing justification. Furthermore, it has been argued that whipping tired horses in racing is the most televised form of violence to animals. The present study used de-identified data from a recent independent Australian poll (n = 1,533) to characterise the 26% of respondents (113 females and 271 males) who support the whipping of racehorses and the 10% of racing enthusiasts in the sample (44 females and 63 males) who would stop watching races and betting on them if whipping were banned. Logistic regression models examining associations between age, gender, and income level of respondents demonstrated that those who support racehorse whipping are significantly more likely to be male. Among racing enthusiasts who would stop watching races and betting on them if whipping were banned, those in the lowest income bracket were over-represented. The more frequently respondents attended races or gambled on them, the more likely they were to agree that horses should be hit with a whip during the normal course of a race. These findings align with previous studies of violence among men and women but may also be attributed to male support of traditional gambling practices. Globally, racing organisations may consider the findings of the present study helpful in their deliberations on the merits of continuing the practice of whipping tired horses in the name of sport. The study might also provide important data for stakeholders who demand that it continues
How and why DNA barcodes underestimate the diversity of microbial eukaryotes
Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences
Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues
The Sunyaev-Zeldovich Effect and Its Cosmological Significance
Comptonization of the cosmic microwave background (CMB) radiation by hot gas
in clusters of galaxies - the Sunyaev-Zeldovich (S-Z) effect - is of great
astrophysical and cosmological significance. In recent years observations of
the effect have improved tremendously; high signal-to-noise images of the
effect (at low microwave frequencies) can now be obtained by ground-based
interferometric arrays. In the near future, high frequency measurements of the
effect will be made with bolomateric arrays during long duration balloon
flights. Towards the end of the decade the PLANCK satellite will extensive S-Z
surveys over a wide frequency range. Along with the improved observational
capabilities, the theoretical description of the effect and its more precise
use as a probe have been considerably advanced. I review the current status of
theoretical and observational work on the effect, and the main results from its
use as a cosmological probe.Comment: Invited review; in proceedings of the Erice NATO/ASI `Astrophysical
Sources of High Energy Particles and Radiation'; 11 pages, 3 figure
Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change
The North Atlantic Oscillation (NAO) obtained using instrumental and
documentary proxy predictors from Eurasia is found to be characterized by a
quasi 60-year dominant oscillation since 1650. This pattern emerges clearly
once the NAO record is time integrated to stress its comparison with the
temperature record. The integrated NAO (INAO) is found to well correlate with
the length of the day (since 1650) and the global surface sea temperature
record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can
be used as a good proxy for global climate change, and that a 60-year cycle
exists in the global climate since at least 1700. Finally, the INAO ~60-year
oscillation well correlates with the ~60- year oscillations found in the
historical European aurora record since 1700, which suggests that this 60-year
dominant climatic cycle has a solar-astronomical origin
- …
