260 research outputs found

    Optical spectrum of proflavine and its ions

    Full text link
    Motivated by possible astrophysical and biological applications we calculate visible and near UV spectral lines of proflavine (C13H11N3, 3,6-diaminoacridine) in vacuum, as well as its anion, cation, and dication. The pseudopotential density functional and time-dependent density functional methods are used. We find a good agreement in spectral line positions calculated by two real-time propagation methods and the Lanczos chain method. Spectra of proflavine and its ions show characteristic UV lines which are good candidates for a detection of these molecules in interstellar space and various biological processes

    Modelling CO formation in the turbulent interstellar medium

    Full text link
    We present results from high-resolution three-dimensional simulations of turbulent interstellar gas that self-consistently follow its coupled thermal, chemical and dynamical evolution, with a particular focus on the formation and destruction of H2 and CO. We quantify the formation timescales for H2 and CO in physical conditions corresponding to those found in nearby giant molecular clouds, and show that both species form rapidly, with chemical timescales that are comparable to the dynamical timescale of the gas. We also investigate the spatial distributions of H2 and CO, and how they relate to the underlying gas distribution. We show that H2 is a good tracer of the gas distribution, but that the relationship between CO abundance and gas density is more complex. The CO abundance is not well-correlated with either the gas number density n or the visual extinction A_V: both have a large influence on the CO abundance, but the inhomogeneous nature of the density field produced by the turbulence means that n and A_V are only poorly correlated. There is a large scatter in A_V, and hence CO abundance, for gas with any particular density, and similarly a large scatter in density and CO abundance for gas with any particular visual extinction. This will have important consequences for the interpretation of the CO emission observed from real molecular clouds. Finally, we also examine the temperature structure of the simulated gas. We show that the molecular gas is not isothermal. Most of it has a temperature in the range of 10--20 K, but there is also a significant fraction of warmer gas, located in low-extinction regions where photoelectric heating remains effective.Comment: 37 pages, 15 figures; minor revisions, matches version accepted by MNRA

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe

    Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review

    Get PDF
    The prevalence of cyanobacteria is increasing in freshwaters due to climate change, eutrophication, and their ability to adapt and thrive in changing environmental conditions. In response to various environmental pressures, they produce toxins known as cyanotoxins, which impair water quality significantly. Prolonged human exposure to cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxins, and anatoxin through drinking water can cause severe health effects. Conventional water treatment processes are not effective in removing these cyanotoxins in water and advanced water treatment processes are often used instead. Among the advanced water treatment methods, adsorption is advantageous compared to other methods because of its affordability and design simplicity for cyanotoxins removal. This article provides a current review of recent developments in cyanotoxin removal using both conventional and modified adsorbents. Given the different cyanotoxins removal capacities and cost of conventional and modified adsorbents, a future outlook, as well as suggestions are provided to achieve optimal cyanotoxin removal through adsorption

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Environmental Emission of Pharmaceuticals from Wastewater Treatment Plants in the USA

    Get PDF
    The residual drugs, drug bioconjugates, and their metabolites, mostly from human and veterinary usage, are routinely flushed down the drain, and enter wastewater treatment plants (WWTP). Increasing population, excessive use of allopathic medicine, continual introduction of novel drugs, and existing inefficient wastewater treatment processes result in the discharge of large volumes of pharmaceuticals and their metabolites from the WWTPs into the environment. The effluent from the WWTPs globally contaminate ~25% of rivers and the lakes. Pharmaceuticals in the environment, as contaminants of emerging concerns, behave as pseudo-persistent despite their relatively short environmental half-lives in the environment. Therefore, residual levels of pharmaceuticals in the environment not only pose a threat to the wildlife but also affect human health through contaminated food and drinking water. This chapter highlights WWTPs as point-sources of their environmental emissions and various effects on the aquatic and terrestrial ecosystem

    From nuclei to atoms and molecules: the chemical history of the early Universe

    Full text link
    The "dark age" of the Universe is generally pointed out as the period between the recombination epoch and the horizon of current observations (z=5-6). The arrow of time in the cosmic history describes the progression from simplicity to complexity, because the present Universe is clumpy and complicated unlike the homogeneous early Universe. Thus it is crucial to know the nature of the constituents, in order to understand the conditions of the formation of the first bound objects. In this paper we analyse the chemical history of this "dark age" through the creation of the primordial nuclei to the formation of the first atoms and molecules. Then we will describe the consequences of the molecular formation on the birth of the proto-objects. In this context we will mention the important works of Dennis W. Sciama who influenced a large number of theorists -cosmologists and astronomers- on this new field of research dedicated to primordial molecules.Comment: 25 pages, 1 figure, Special Issue dedicated to Pr. Dennis W. Sciam

    Economic Analysis of Knowledge: The History of Thought and the Central Themes

    Full text link
    Following the development of knowledge economies, there has been a rapid expansion of economic analysis of knowledge, both in the context of technological knowledge in particular and the decision theory in general. This paper surveys this literature by identifying the main themes and contributions and outlines the future prospects of the discipline. The wide scope of knowledge related questions in terms of applicability and alternative approaches has led to the fragmentation of research. Nevertheless, one can identify a continuing tradition which analyses various aspects of the generation, dissemination and use of knowledge in the economy
    corecore