1,275 research outputs found
An interactive editor for definition of touch-sensitive zones for a graphic display
In the continuing effort to develop more efficient man-machine communications methods, touch displays have shown potential as straightforward input systems. The development of software necessary to handle such systems, however, can become tedious. In order to reduce the need for redundant programming, a touch editor has been developed which allows a programmer to interactively define touch-sensitive areas for a graphic display. The information produced during the editing process is written to a data file, which can be accessed easily when needed by an application program. This paper outlines the structure, logic, and use of the editor, as well as the hardware with which it is presently compatible
IT Data Mining Tool Uses in Aerospace
Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure
Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing
Quantum search algorithms are considered in the context of protein sequence
comparison in biocomputing. Given a sample protein sequence of length m (i.e m
residues), the problem considered is to find an optimal match in a large
database containing N residues. Initially, Grover's quantum search algorithm is
applied to a simple illustrative case - namely where the database forms a
complete set of states over the 2^m basis states of a m qubit register, and
thus is known to contain the exact sequence of interest. This example
demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N)
requirements. An algorithm is then presented for the (more realistic) case
where the database may contain repeat sequences, and may not necessarily
contain an exact match to the sample sequence. In terms of minimizing the
Hamming distance between the sample sequence and the database subsequences the
algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an
extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the
case when the number of matches is not a priori known.Comment: LaTeX, 5 page
The Influence of Superpositional Wave Function Oscillations on Shor's Quantum Algorithm
We investigate the influence of superpositional wave function oscillations on
the performance of Shor's quantum algorithm for factorization of integers. It
is shown that the wave function oscillations can destroy the required quantum
interference. This undesirable effect can be routinely eliminated using a
resonant pulse implementation of quantum computation, but requires special
analysis for non-resonant implementations.Comment: 4 pages, NO figures, revte
Characterisation of a three-dimensional Brownian motor in optical lattices
We present here a detailed study of the behaviour of a three dimensional
Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et
al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and
numerical simulations of a Brownian particle. The potentials used are spatially
and temporally symmetric, but combined spatiotemporal symmetry is broken by
phase shifts and asymmetric transfer rates between potentials. The diffusion of
atoms in the optical lattices is rectified and controlled both in direction and
speed along three dimensions. We explore a large range of experimental
parameters, where irradiances and detunings of the optical lattice lights are
varied within the dissipative regime. Induced drift velocities in the order of
one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure
Physical Optimization of Quantum Error Correction Circuits
Quantum error correcting codes have been developed to protect a quantum
computer from decoherence due to a noisy environment. In this paper, we present
two methods for optimizing the physical implementation of such error correction
schemes. First, we discuss an optimal quantum circuit implementation of the
smallest error-correcting code (the three bit code). Quantum circuits are
physically implemented by serial pulses, i.e. by switching on and off external
parameters in the Hamiltonian one after another. In contrast to this, we
introduce a new parallel switching method that allows faster gate operation by
switching all external parameters simultaneously. These two methods are applied
to electron spins in coupled quantum dots subject to a Heisenberg coupling
H=J(t) S_1*S_2 which can generate the universal quantum gate
`square-root-of-swap'. Using parallel pulses, the encoding for three-bit
quantum error correction in a Heisenberg system can be accelerated by a factor
of about two. We point out that parallel switching has potential applications
for arbitrary quantum computer architectures.Comment: 13 pages, 6 figure
Quantum phase gate with a selective interaction
We present a proposal for implementing quantum phase gates using selective
interactions. We analize selectivity and the possibility to implement these
gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio
Experimental Implementation of the Quantum Random-Walk Algorithm
The quantum random walk is a possible approach to construct new quantum
algorithms. Several groups have investigated the quantum random walk and
experimental schemes were proposed. In this paper we present the experimental
implementation of the quantum random walk algorithm on a nuclear magnetic
resonance quantum computer. We observe that the quantum walk is in sharp
contrast to its classical counterpart. In particular, the properties of the
quantum walk strongly depends on the quantum entanglement.Comment: 5 pages, 4 figures, published versio
Quantum search without entanglement
Entanglement of quantum variables is usually thought to be a prerequisite for
obtaining quantum speed-ups of information processing tasks such as searching
databases. This paper presents methods for quantum search that give a speed-up
over classical methods, but that do not require entanglement. These methods
rely instead on interference to provide a speed-up. Search without entanglement
comes at a cost: although they outperform analogous classical devices, the
quantum devices that perform the search are not universal quantum computers and
require exponentially greater overhead than a quantum computer that operates
using entanglement. Quantum search without entanglement is compared to
classical search using waves.Comment: 9 pages, TeX, submitted to Physical Review Letter
Generation of entangled states of two atoms inside a leaky cavity
An in-depth theoretical study is carried out to examine the
quasi-deterministic entanglement of two atoms inside a leaky cavity. Two
-type three-level atoms, initially in their ground states, may become
maximally entangled through the interaction with a single photon. By working
out an exact analytic solution, we show that the probability of success depends
crucially on the spectral function of the injected photon. With a cavity
photon, one can generate a maximally entangled state with a certain probability
that is always less than 50%. However, for an injected photon with a narrower
spectral width, this probability can be significantly increased. In particular,
we discover situations in which entanglement can be achieved in a single trial
with an almost unit probability
- …
