4,542 research outputs found
High-frequency behavior of FeN thin films fabricated by reactive sputtering
We investigated high-frequency behavior of FeN thin films prepared by
reactive sputtering through ferromagnetic resonance (FMR) and its relationship
with the static magnetic properties. The FMR was observed in the frequency
range from 2 to 18 GHz in the FeN films fabricated at proper nitrogen flow rate
(NFR). In those FeN thin films, a decrease of the saturation magnetization and
the corresponding decrease of the FMR frequency were observed as NFR was
increased during the deposition. The external field dependences of the FMR
frequencies were well fit to the Kittel formula and the Land\'e g-factors
determined from the fit were found to be very close to the free electron value.
The high-field damping parameters were almost insensitive to the growth
condition of NFR. However, the low-field damping parameters exhibited high
sensitivity to NFR very similar to the dependence of the hard-axis coercivity
on NFR, suggesting that extrinsic material properties such as impurities and
defect structures could be important in deciding the low-field damping
behavior.Comment: 18 pages, 6 figures, ICAMD 2015 conferenc
The Interaction of Phospholipase C-{beta}3 with Shank2 Regulates mGluR-mediated Calcium Signal
Phospholipase C-{beta} isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-{beta} isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-{beta}3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD). The C terminus of PLC-{beta}3, but not other PLC-{beta} isotypes, specifically interacts with the PDZ domain of Shank2. Homer 1b, a Shank-interacting protein that is linked to group I metabotropic glutamate receptors and IP3 receptors, forms a multiple complex with Shank2 and PLC-{beta}3. Importantly, microinjection of a synthetic peptide specifically mimicking the C terminus of PLC-{beta}3 markedly reduces the mGluR-mediated intracellular calcium response. These results demonstrate that Shank2 brings PLC-{beta}3 closer to Homer 1b and constitutes an efficient mGluR-coupled signaling pathway in the PSD region of neuronal synapses
Insight into highly conserved H1 subtype-specific epitopes in influenza virus hemagglutinin
Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA) that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutralizing activities against H1 subtype influenza viruses, and determined the complex structure of HA derived from a 2009 pandemic virus A/Korea/01/2009 (KR01) and the Fab fragment from H1-specific monoclonal antibody GC0587. The overall structure of the complex was essentially identical to the previously determined KR01 HA-Fab0757 complex structure. Both Fab0587 and Fab0757 recognize readily accessible head regions of HA, revealing broadly shared and conserved antigenic determinants among H1 subtypes. The beta-strands constituted by Ser110-Glu115 and Lys169-Lys170 form H1 epitopes with distinct conformations from those of H1 and H3 HA sites. In particular, Glu112, Glu115, Lys169, and Lys171 that are highly conserved among H1 subtype HAs have close contacts with HCDR3 and LCDR3. The differences between Fab0587 and Fab0757 complexes reside mainly in HCDR3 and LCDR3, providing distinct antigenic determinants specific for 1918 pdm influenza strain. Our results demonstrate a potential key neutralizing epitope important for H1 subtype specificity in influenza virus
Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharide-stimulated RAW264.7 cells
The aim of this study was to investigate the chemical constituents of Lindera erythrocarpa essential oil (LEO) by gas chromatography-mass spectrometry and evaluate their inhibitory effect on the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Fifteen compounds, accounting for 63.7 % of the composition of LEO, were identified. The main compounds were nerolidol (18.73 %), caryophyllene
(14.41 %), α-humulene (7.73 %), germacrene-D (4.82 %), and α-pinene (4.47 %). LEO significantly inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and subsequent production of NO and prostaglandin E2. In addition, it reduced the release of pro-inflammatory cytokines in LPS-activated RAW264.7 cells. The molecular mechanism underlying the effect of LEO was associated with inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, LEO inhibited LPS-induced phosphorylation and
degradation of inhibitor of kappa B-α, which is required for the activation of the p50 and p65 nuclear factor (NF)-κB subunits in RAW264.7 cells. Taken together, these data suggest that LEO exerted its anti-inflammatory effect by downregulating LPS-induced production of pro-inflammatory mediators through the inhibition of NF-κB and
MAPK signaling in RAW264.7 cells
Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients
ESTIMATING THE CONVERGENCE RATE OF FUNCTIONAL ITERATIONS FOR SOLVING QUADRATIC MATRIX EQUATIONS ARISING IN HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS (Study on Nonlinear Analysis and Convex Analysis)
We consider Bernoulli's method for solving quadratic matrix equations (QMEs) having form Q(X) = AX^2 +BX+ C = 0 arising in hyperbolic quadratic eigenvalue problems (QEPs) and quasi-birth-death problems (QBDs) where A, B, C ∈ R^[m×m] satisfy Esenfeld's condition [8]. First, we analyze the exsistence of a solution and the convergence of the methods. Second, we sharpen bounds of the rates of convergence. Finally, in numerical experimentations, we show that the modified bounds give appropriate estimations of the numbers of iterations
Polymeric tandem organic light-emitting diodes using a self-organized interfacial layer
The authors have demonstrated efficient polymeric tandem organic light-emitting diodes (OLEDs) with a self-organized interfacial layer, which was formed by differences in chemical surface energy. Hydrophilic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) was spin coated onto the hydrophobic poly(9,9-dyoctilfluorene) (PFO) surface and a PEDOT:PSS bubble or dome was built as an interfacial layer. The barrier heights of PEDOT:PSS and PFO in the two-unit tandem OLED induced a charge accumulation at the interface in the heterojunction and thereby created exciton recombination at a much higher level than in the one-unit reference. This effect was confirmed in both the hole only and the electron only devices. (c) 2008 American Institute of Physicsopen8
- …
