780 research outputs found
Methylation of CpG island is not a ubiquitous mechanism for the loss of oestrogen receptor in breast cancer cells.
Methylation has been shown to play an important role in the down-regulation of oestrogen receptors (ER) in breast cancer cells. One critical question that remains unclear is whether methylation can account for the loss of ER expression in cells derived from an ER-positive cell line. This laboratory has established an in vitro cell system using long-term growth of human ER-positive breast cancer cell line T47D in oestrogen-free medium. A clonal cell line, T47D:C4:2 (C4:2), has been characterized. Unlike T47D:A18 (A18), which is a T47D line maintained in oestrogen medium, C4:2 has lost the expression of ER and hormone responsiveness. DNA fingerprinting and restriction fragment length polymorphism (RFLP) analysis results confirmed that C4:2 was of the same lineage as A18. These cell lines provide an invaluable system to study the mechanism of ER expression and regulatory pathways leading to hormone-independent growth. The results here clearly demonstrate that the ER CpG island in C4:2 cells remains unmethylated. The loss of ER in the cell line must be due to mechanisms other than methylation. We also evaluated the ER CpG island in the MDA-MB-231:10A (10A) cell line, which is a clone from the MDA-MB-231 line obtained from ATCC and the DNA from the MDA-MB-231 cell line used in the original report. Unlike the cell line from the report, which showed a full methylation pattern in the island, the 10A line only showed a partial methylation pattern in the CpG island. Possible mechanisms pertaining to the heterogeneous methylation pattern of the ER CpG island in the breast cancer cells are discussed
By looking back we can see the way forward: enhancing the gains achieved with antihormone therapy
Introduction to sessions on 'Endocrine therapy: where have we come from, where are we at and where are we going to?'
Early discontinuation of endocrine therapy for breast cancer: Who is at risk in clinical practice?
Purpose: Despite evidence supporting at least five years of endocrine therapy for early breast cancer, many women discontinue therapy early. We investigated the impact of initial therapy type and specific comorbidities on discontinuation of endocrine therapy in clinical practice.
Methods
We identified women in a population-based cohort with a diagnosis of early breast cancer and an incident dispensing of anastrozole, letrozole or tamoxifen from 2003-2008 (N = 1531). Pharmacy and health service data were used to determine therapy duration, treatment for pre-existing and post-initiation comorbidities (anxiety, depression, hot flashes, musculoskeletal pain, osteoporosis, vaginal atrophy), demographic and other clinical characteristics. Time to discontinuation of initial, and any, endocrine therapy was calculated. Cox regression determined the association of different characteristics on early discontinuation.
Results
Initial endocrine therapy continued for a median of 2.2 years and any endocrine therapy for 4.8 years. Cumulative probability of discontinuing any therapy was 17% after one year and 58% by five years. Initial tamoxifen, pre-existing musculoskeletal pain and newly-treated anxiety predicted shorter initial therapy but not discontinuation of any therapy. Early discontinuation of any therapy was associated with newly-treated hot flashes (HR = 2.1, 95%CI = 1.3-3.3), not undergoing chemotherapy (HR = 1.4, 95%CI = 1.1-1.8) and not undergoing mastectomy (HR = 1.5, 95%CI = 1.2-1.8).
Conclusions
Less than half of women completed five years of endocrine therapy. Women at greatest risk of stopping any therapy early were those with newly-treated hot flashes, no initial chemotherapy, or no initial mastectomy. This suboptimal use means that the reductions in recurrence demonstrated in clinical trials may not be realised in practice
NICE : A Computational solution to close the gap from colour perception to colour categorization
The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms
Endocrine therapy for breast cancer: a model of hormonal manipulation
Oestrogen receptor (ER) is the driving transcription factor in 70% of breast cancer. Endocrine therapies targeting the ER represent one of the most successful anticancer strategies to date. In the clinic, novel targeted agents are now being exploited in combination with established endocrine therapies to maximise efficacy. However, clinicians must balance this gain against the risk to patients of increased side effects with combination therapies. This article provides a succinct outline of the principles of hormonal manipulation in breast cancer, alongside the key evidence that underpins current clinical practice. As the role of endocrine therapy in breast cancer continues to expand, the challenge is to interpret the data and select the optimal strategy for a given clinical scenario
Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer
Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587 premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients. N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%, P<10?77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (P<0.001). DM-Tam was influenced by body mass index (P<0.001). Improved distant relapse-free survival (DRFS) was associated with decreasing DM-Tam/(Z)-endoxifen (P=0.036) and increasing CYP2D6 activity score (hazard ratio (HR)=0.62; 95% confidence interval (CI), 0.43–0.91; P=0.013). Low (<14?nM) compared with high (>35?nM) endoxifen concentrations were associated with shorter DRFS (univariate P=0.03; multivariate HR=1.94; 95% CI, 1.04–4.14; P=0.064). Our data indicate that endoxifen formation in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased CYP2D6 activity predict shorter DRFS
- …
