572 research outputs found
Massless scalar field in de Sitter spacetime: unitary quantum time evolution
We prove that, under the standard conformal scaling, a massless field in de
Sitter spacetime admits an O(4)-invariant Fock quantization such that time
evolution is unitarily implemented. This result disproves previous claims in
the literature. We discuss the relationship between this quantization with
unitary dynamics and the family of O(4)-invariant Hadamard states given by
Allen and Folacci, as well as with the Bunch-Davies vacuum.Comment: 23 pages. Typos corrected, matches published versio
Quantum unitary dynamics in cosmological spacetimes
We address the question of unitary implementation of the dynamics for scalar
fields in cosmological scenarios. Together with invariance under spatial
isometries, the requirement of a unitary evolution singles out a rescaling of
the scalar field and a unitary equivalence class of Fock representations for
the associated canonical commutation relations. Moreover, this criterion
provides as well a privileged quantization for the unscaled field, even though
the associated dynamics is not unitarily implementable in that case. We discuss
the relation between the initial data that determine the Fock representations
in the rescaled and unscaled descriptions, and clarify that the S-matrix is
well defined in both cases. In our discussion, we also comment on a recently
proposed generalized notion of unitary implementation of the dynamics, making
clear the difference with the standard unitarity criterion and showing that the
two approaches are not equivalent.Comment: 18 page
Uniqueness of the Fock quantization of the Gowdy model
After its reduction by a gauge-fixing procedure, the family of linearly
polarized Gowdy cosmologies admit a scalar field description whose
evolution is governed by a Klein-Gordon type equation in a flat background in
1+1 dimensions with the spatial topology of , though in the presence of a
time-dependent potential. The model is still subject to a homogeneous
constraint, which generates -translations. Recently, a Fock quantization
of this scalar field was introduced and shown to be unique under the
requirements of unitarity of the dynamics and invariance under the gauge group
of -translations. In this work, we extend and complete this uniqueness
result by considering other possible scalar field descriptions, resulting from
reasonable field reparameterizations of the induced metric of the reduced
model. In the reduced phase space, these alternate descriptions can be obtained
by means of a time-dependent scaling of the field, the inverse scaling of its
canonical momentum, and the possible addition of a time-dependent, linear
contribution of the field to this momentum. Demanding again unitarity of the
field dynamics and invariance under the gauge group, we prove that the
alternate canonical pairs of fieldlike variables admit a Fock representation if
and only if the scaling of the field is constant in time. In this case, there
exists essentially a unique Fock representation, provided by the quantization
constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis
shows that the scalar field description proposed by Pierri does not admit a
Fock quantization with the above unitarity and invariance properties.Comment: 14 page
Quantum Gowdy model: A uniqueness result
Modulo a homogeneous degree of freedom and a global constraint, the linearly
polarised Gowdy cosmologies are equivalent to a free scalar field
propagating in a fixed nonstationary background. Recently, a new field
parameterisation was proposed for the metric of the Gowdy spacetimes such that
the associated scalar field evolves in a flat background in 1+1 dimensions with
the spatial topology of , although subject to a time dependent potential.
Introducing a suitable Fock quantisation for this scalar field, a quantum
theory was constructed for the Gowdy model in which the dynamics is implemented
as a unitary transformation. A question that was left open is whether one might
adopt a different, nonequivalent Fock representation by selecting a distinct
complex structure. The present work proves that the chosen Fock quantisation is
in fact unique (up to unitary equivalence) if one demands unitary
implementation of the dynamics and invariance under the group of constant
translations. These translations are precisely those generated by the global
constraint that remains on the Gowdy model. It is also shown that the proof of
uniqueness in the choice of complex structure can be applied to more general
field dynamics than that corresponding to the Gowdy cosmologies.Comment: 28 pages, minor changes, version accepted for publication in
Classical and Quantum Gravit
Privatization and European Economic and Monetary Union
To qualify for full membership in the Economic and Monetary Union, member states had to meet strict budget deficit and government debt convergence criteria. This study analyzes whether deficits and indebtedness in the 1990s in Spain, Italy, Portugal and Greece were associated with a shift from privatization as a tool of economic restructuring, to privatization as a tool of European monetary convergence. The empirical results suggests that privatization funds accruing from the sale of state-owned enterprises in the Southern European countries might have been used to tackle budget deficits and meet the stringent criteria for monetary integration.Monetary Union; Privatization
Eficiência técnica na produção de leite em pequenas propriedades da microrregião de Viçosa - MG
This work evaluated the technical efficiency of productive resources utilization in small milk production farmers located in Viçosa region, Minas Gerais, Brazil. The study comprised small milk producers who have received technical assistance from a program created by the Federal University of Viçosa and Nestlé. The technical efficiency was evaluated using the Data Envelopment Analysis (DEA) technique. The results obtained show that there are some farmers efficient and others inefficient. It was also observed that, during the 1999-2003 period, the technical efficiency has improved in the most of the farmers analyzed.DEA, Technical efficiency, Milk production, Farm Management,
Microbially-induced sedimentary structures (MISS) in the Puerto Rosales tidal flat, Bahía Blanca estuary
El estudio de matas microbianas en ambientes marinos costeros silicoclásticos actuales constituye una importante fuente de información para el análisis de análogos fósiles. En el estuario de Bahía Blanca se estudiaron planicies de marea cubiertas por matas desde un enfoque geobiológico, con el objetivo de identificar y describir estructuras inducidas por actividad microbiana (ESIAM), y distinguir rasgos presentes en los sistemas actuales que permitan reconocer estas comunidades de microorganismos en depósitos fósiles. Se realizaron muestreos biológicos y sedimentológicos, y se implementaron técnicas de microscopía óptica y electrónica para la determinación de microorganismos y la identificación de texturas características y minerales autigénicos. Las matas microbianas resultaron estar dominadas por cianobacterias y, en menor proporción, diatomeas; microorganismos que generan sustancias exopoliméricas que bioestabilizan la superficie sedimentaria. Se reconocieron texturas típicas de matas epibentónicas, tales como granos orientados y granos pequeños unidos por la mata, pirita framboidal y ceolitas. En la zona intermareal-supramareal se identificaron domos de gas, fábrica porosa esponjosa y superficies tipo colador. Además se observaron grietas de contracción, dobleces, fragmentos de mata, depresiones y remanentes erosivos, pliegues y arrugas, así como también ondulitas multidireccionales. Las estructuras halladas están relacionadas con condiciones de calma/latencia, exposición prolongada (desecación) y eventos de tormenta con alta energía erosiva sobre la planicie (olas y corrientes fuertes). En este sentido, las ESIAM resultan importantes indicadoras de condiciones ambientales particulares que presentan un elevado potencial de preservación. Su reconocimiento en el registro fósil, a través de rasgos macro y microscópicos, permiten refinar las interpretaciones paleoambientales en sucesiones marino-costeras.The study of microbial mats in modern siliciclastic coastal marine settings represents an important analogue for the analysis of fossil deposits in similar paleoenvironments. In the Bahía Blanca estuary, mat-covered tidal flats were studied from a geobiological perspective with the aims of identifying and describing microbially-induced sedimentary structures (MISS), and to distinguish features in modern systems that allow the recognition of such microbial communities in fossil deposits. Systematic biological and sedimentological samplings were carried out, and the identification of microorganisms and the recognition and characterization of typical textures and authigenic minerals were performed through light and electronic microscopy techniques. Microbial mats were dominated by cyanobateria, followed by diatoms; both groups of microorganisms are known to secrete extracellular polymeric substances (EPS) and biostabilize the sedimentary surface. Characteristic textures of epibenthic mats, such as oriented grains and mat-bound small grains, framboidal pyrite and zeolites were recognized. In the intertidal-supratidal zone, MISS termed gas domes, sponge pore fabric, and sieve-like surfaces were identified. Moreover, shrinkage cracks, flip-overs, mat chips, erosional remnants and pockets, folds, as well as multidirected ripple marks were observed. These structures are related to calm conditions/latencies, prolonged subaerial exposure (desiccation), and storm events with high hydrodynamic energy (erosive) acting over the tidal flat (e.g. waves and currents). In this sense, MISS constitute important indicators of specific environmental conditions and thus their recognition in the rock record allows a refined interpretation of the paleoenvironment in coastal marine successions.Fil: Bournod, Constanza Naimé. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaFil: Cuadrado, Diana G.. Universidad Nacional del Sur. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaFil: Carmona, Noelia Beatriz. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones en Paleobiologia y Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponce, Juan Jose. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones En Paleobiologia y Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pan, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Marinas; Argentin
- …
