4,732 research outputs found

    Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system.

    Get PDF
    Protein degradation is a fundamental process in all living cells and is essential to remove both damaged proteins and intact proteins that are no longer needed by the cell. We are interested in creating synthetic genetic circuits that function in a cell-free expression system. This will require not only an efficient protein expression platform but also a robust protein degradation system in cell extract. Therefore, we purified and tested the activity of E. coli ClpXP protease in cell-free transcription-translation (TX-TL) systems that used E. coli S30 cell extract. Surprisingly, our studies showed that purified ClpXP added to the TX-TL system has very low proteolytic activity. The low activity of ClpXP was correlated with the rapid consumption of adenosine triphosphate (ATP) in cell extract. We improved the activity of ClpXP in cell extract by adding exogenous ATP and an energy regeneration system. We then established conditions for both protein synthesis, and protein degradation by ClpXP to occur simultaneously in the TX-TL systems. The optimized conditions for ClpXP activity will be useful for creating tunable synthetic genetic circuits and in vitro synthetic biology

    Implementation Choices for the Children's Health Insurance Program Reauthorization Act of 2009

    Get PDF
    Synthesizes policy analyses and discussions with experts of provisions in the Children's Health Insurance Program Reauthorization Act to strengthen outreach and enrollment and improve quality of care. Recommends steps to ensure effective implementation

    Exploration into Properties of Molybdenum Disulfide using Atomistic Simulation

    Get PDF
    Molybdenum disulfide (MoS2) has a lamellar crystal structure, which makes it ideal for use as a solid lubricant. Transmission electron microscope (TEM) images have shown that line defects exist within the lattice of mechanically deformed MoS2, but the physical mechanisms which lead to the formation of these defects are unknown. The two central objectives of this research are to use molecular dynamics simulations to study the effects of tensile deformation on both single layer and bulk MoS2 and explore the properties of line defects in an otherwise perfect lattice of MoS2. Under tensile loading, molecular dynamics simulations show a multi-stage stress versus strain diagram. Atomistic visualization shows a distinct change in the structure of the lattice during tensile stretching. This new structure is likely the result of a phase transformation. For the second objective, a series of computational approaches are used to create a single line defect in a perfect MoS2 lattice. Shearing both parallel and perpendicular to the basal plane of MoS2 and compression leading to buckling were unsuccessful in moving the line defect

    Action research on the letter as genre : an examination of both external and internal goals for the course and its students

    Get PDF
    This thesis project investigates a recently taught Honors split-level course taught at the University of Missouri through the lens and influence of Action Research, investigating the course's impact on instructors and students

    Acceptance and commitment therapy delivered in a dyad after a severe traumatic brain injury: a feasibility study

    Get PDF
    Objective: There is a high prevalence of complex psychological distress after a traumatic brain injury but limited evidence of effective interventions. We examined the feasibility of Acceptance and Commitment Therapy after a severe traumatic brain injury using the criteria, investigating a therapeutic effect, and reviewing the acceptability of measures, treatment protocol, and delivery method (in a dyad of two clients and a therapist). Method: Two male outpatients with severe traumatic brain injury and associated psychological distress jointly engaged in a seven session treatment program based on Acceptance and Commitment Therapy principles. Pre- and post-treatment measures of mood, psychological flexibility, and participation were taken in addition to weekly measures. Results: The intervention showed a therapeutic effect with one participant, and appeared to be acceptable for both participants with regard to program content, measures, and delivery mode by in a dyad. One participant showed both significant clinical and reliable change across several outcome measures including measures of mood and psychological flexibility. The second participant did not show a reduction in psychological inflexibility, but did show a significant drop in negative affect. Significant changes pre- to post-treatment for measures of participation were not indicated. Qualitatively, both participants engaged in committed action set in accordance with their values. Conclusions: This study suggests that Acceptance and Commitment Therapy may be feasible to be delivered in a dyad with individuals who have a severe traumatic brain injury. A further test of its potential efficacy in a phase II clinical trial is recommended

    Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview

    Get PDF
    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the event of an IRU failure, the rate data is be derived from the star tracker, but with degraded pointing performance. The Delta-V control mode responsibility is to maintain attitude pointing during the cruise trajectory, insertion burns and lunar orbit maintenance by adjustments made to the spacecraft s velocity magnitude and vector direction. The ACS also provides for a thruster based system momentum management algorithm (known as Delta-H) to maintain the system and wheel momentum to within acceptable levels. In the event an anomaly causes the LRO spacecraft to lose the ability to maintain its current attitude pointing, a Sun Safe mode is included in the ACS for the purpose of providing a known power and thermally safe coarse inertial sun attitude for an indefinite period of time, within the manageable limits of the reaction wheels. The Sun Safe mode is also the initial spacecraft control mode off of the launch vehicle and provides for a means to null tip-off rates immediately after separation. The nominal configuration is to use the IRU for rate information in the controller. In the event of a gyro failure a gyroless control mode was developed that computes rate information from the CSS data

    Elastic Pekeris waveguide normal mode solution comparisons against laboratory data

    Get PDF
    Following the derivation presented by Press and Ewing [Geophysics 15, 426-446 (1950)], a normal mode solution for the Pekeris waveguide problem with an elastic bottom is outlined. The analytic solution is benchmarked against data collected in an experiment performed at the Naval Research Laboratory [Collis et al., J. Acoust. Soc. Am. 122, 1987-1993 (2007)]. Comparisons reveal a close match between the analytic solution and experimental data. Results are strongly dependent on the accuracy of the horizontal wavenumbers for the modes, and horizontal wavenumber spectra are compared against those from the experimental data. (C) 2012 Acoustical Society of AmericaNational Science Foundation Division of Graduate Education [DGE-0638719

    Launch and Commissioning of the Lunar Reconnaissance Orbiter (LRO)

    Get PDF
    The Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station. LRO, designed, built, and operated by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. To date, the Guidance, Navigation and Control (GN&C) subsystem has operated nominally and met all requirements. However, during the early phase of the mission, the GN&C Team encountered some anomalies. For example, during the Solar Array and High Gain Antenna deployments, one of the safing action points tripped, which was not expected. Also, the spacecraft transitioned to its safe hold mode, SunSafe, due to encountering an end of file for an ephemeris table. During the five-day lunar acquisition, one of the star trackers triggered the spacecraft to transition into a safe hold configuration, the cause of which was determined. These events offered invaluable insight to better understand the performance of the system they designed. An overview of the GN&C subsystem will be followed by a mission timeline. Then, interesting flight performance as well as anomalies encountered by the GN&C Team will be discussed in chronological order
    corecore