470 research outputs found
Recommended from our members
Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: a randomized, controlled trial.
Aims: To conduct a randomized trial in order to guide the optimum therapy of symptomatic atrioventricular nodal re-entrant tachycardia (AVNRT). Methods and Results: Patients with at least one symptomatic episode of tachycardia per month and an electrophysiologic diagnosis of AVNRT were randomly assigned to catheter ablation or chronic antiarrhythmic drug (AAD) therapy with bisoprolol (5 mg od) and/or diltiazem (120-300 mg od). All patients were properly educated to treat subsequent tachycardia episodes with autonomic manoeuvres or a 'pill in the pocket' approach. The primary endpoint of the study was hospital admission for persistent tachycardia cardioversion, during a follow-up period of 5 years. Sixty-one patients were included in the study. In the ablation group, 1 patient was lost to follow-up, and 29 were free of arrhythmia or conduction disturbances at a 5-year follow-up. In the AAD group, three patients were lost to follow-up. Of the remainder, 10 patients (35.7%) continued with initial therapy, 11 patients (39.2%) remained on diltiazem alone, and 7 patients (25%) interrupted their therapy within the first 3 months following randomization, and subsequently developed an episode requiring cardioversion. During a follow-up of 5 years, 21 patients in the AAD group required hospital admission for cardioversion. Survival free from the study endpoint was significantly higher in the ablation group compared with the AAD group (log-rank test, P < 0.001). Conclusions: Catheter ablation is the therapy of choice for symptomatic AVNRT. Antiarrhythmic drug therapy is ineffective and not well tolerated
The cardiac work-loop technique:An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles
The Response of Paroxysmal Supraventricular Tachycardia to Overdrive Atrial and Ventricular Pacing:
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75015/1/j.1540-8167.1993.tb01227.x.pd
Further Insight into Mechanisms of Ventricular Tachycardia from the Clinical Electrophysiology Laboratory
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72003/1/j.1540-8167.1991.tb01319.x.pd
The Effect of Electrode Configuration on the Unipolar His-Bundle Electrogram
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75654/1/j.1540-8159.1989.tb06148.x.pd
How Work Impairments and Reduced Work Ability are Associated with Health Care Use in Workers with Musculoskeletal Disorders, Cardiovascular Disorders or Mental Disorders
__Abstract__
Purpose the aim of this study was to explore
how work impairments and work ability are associated with
health care use by workers with musculoskeletal disorders
(MSD), cardiovascular disorders (CVD), or mental disorders
(MD). Methods in this cross-sectional study, subjects
with MSD (n = 2,074), CVD (n = 714), and MD
(n = 443) were selected among health care workers in 12
Dutch organizations. Using an online questionnaire, data
were collected on in
Ventricular tachycardia in ischemic cardiomyopathy; a combined endo-epicardial ablation as the first procedure versus a stepwise approach (EPILOGUE) – study protocol for a randomized controlled trial
The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts
The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP
Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats
<p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p
- …
