3,739 research outputs found
Towards precision distances and 3D dust maps using broadband Period--Magnitude relations of RR Lyrae stars
We determine the period-magnitude relations of RR Lyrae stars in 13
photometric bandpasses from 0.4 to 12 {\mu}m using timeseries observations of
134 stars. The Bayesian formalism, extended from our previous work to include
the effects of line-of-sight dust extinction, allows for the simultaneous
inference of the posterior distribution of the mean absolute magnitude, slope
of the period-magnitude power-law, and intrinsic scatter about a perfect
power-law for each bandpass. In addition, the distance modulus and
line-of-sight dust extinction to each RR Lyrae star in the calibration sample
is determined, yielding a sample median fractional distance error of 0.66%. The
intrinsic scatter in all bands appears to be larger than the photometric
errors, except in WISE W1 (3.4 {\mu}m) and W2 (4.6 {\mu}m) where the
photometric error ( mag) is to be comparable or larger
than the intrinsic scatter. Additional observations at these wavelengths could
improve the inferred distances to these sources further. As an application of
the methodology, we infer the distance to the RRc-type star RZCep at low
Galactic latitude () to be mag
( pc) with colour excess mag. This
distance, equivalent to a parallax of microarcsec, is consistent
with the published HST parallax measurement but with an uncertainty that is 13
times smaller than the HST measurement. If our measurements (and methodology)
hold up to scrutiny, the distances to these stars have been determined to an
accuracy comparable to those expected with Gaia. As RR Lyrae are one of the
primary components of the cosmic distance ladder, the achievement of sub-1%
distance errors within a formalism that accounts for dust extinction may be
considered a strong buttressing of the path to eventual 1% uncertainties in
Hubble's constant.Comment: 21 pages, 29 figures, 2 tables, abstract abridged for arXiv. Comments
solicited on referee report (received June 9, 2014) linked:
https://gist.github.com/profjsb/c6c4e2f3a20ea02f1762 . Public archive of code
used to generate results and figures:
https://github.com/ckleinastro/period_luminosity_relation_fittin
The Genetic Basis of Mutation Rate Variation in Yeast.
Mutations are the root source of genetic variation and underlie the process of evolution. Although the rates at which mutations occur vary considerably between species, little is known about differences within species, or the genetic and molecular basis of these differences. Here, we leveraged the power of the yeast Saccharomyces cerevisiae as a model system to uncover natural genetic variants that underlie variation in mutation rate. We developed a high-throughput fluctuation assay and used it to quantify mutation rates in seven natural yeast isolates and in 1040 segregant progeny from a cross between BY, a laboratory strain, and RM, a wine strain. We observed that mutation rate varies among yeast strains and is heritable (H 2 = 0.49). We performed linkage mapping in the segregants and identified four quantitative trait loci underlying mutation rate variation in the cross. We fine-mapped two quantitative trait loci to the underlying causal genes, RAD5 and MKT1, that contribute to mutation rate variation. These genes also underlie sensitivity to the DNA-damaging agents 4NQO and MMS, suggesting a connection between spontaneous mutation rate and mutagen sensitivity
Present and Future Prospects for GRB Standard Candles
Following our previous work, we conclude that a GRB standard candle
constructed from the Ghirlanda et al. power-law relation between the
geometry-corrected energy (E_gamma) and the peak of the rest-frame prompt burst
spectrum (E_p) is not yet cosmographically useful, despite holding some
potential advantages over SNe Ia. This is due largely to the small sample of
\~20 GRBs with the required measured redshifts, jet-breaks, and peak energies,
and to the strong sensitivity of the goodness-of-fit of the power-law to input
assumptions. The most important such finding concerns the sensitivity to the
generally unknown density (and density profile), of the circumburst medium.
Although the E_p-E_gamma relation is a highly significant correlation over many
cosmologies, until the sample expands to include many low-z events, it will be
most sensitive to Omega_M but essentially insensitive to Omega_Lambda and w,
with some hope of constraining dw/dt with high-z GRB data alone. The relation
clearly represents a significant improvement in the search for an empirical GRB
standard candle, but is further hindered by an unknown physical basis for the
relation, the lack of a low-z training set to calibrate the relation in a
cosmology-independent way, and several major potential systematic uncertainties
and selection effects. Until these concerns are addressed, a larger sample is
acquired, and attempts are made to marginalize or perform Monte Carlo
simulations over the unknown density distribution, we urge caution concerning
claims of the utility of GRBs for cosmography and especially the attempts to
combine GRBs with SNe Ia.Comment: 5 pages, 2 figures, "Proceedings, Gamma-Ray Bursts in the Afterglow
Era: 4th Workshop, Rome, Italy, Oct 18-22, 2004". Accepted to Il Nuovo
Cimento. For more details, see astro-ph/0408413 (ApJ accepted), and other
work from the cosmicbooms.net Team at http://www.cosmicbooms.net
The Corrected Log N-Log Fluence Distribution of Cosmological Gamma-Ray Bursts
Recent analysis of relativistically expanding shells of cosmological
gamma-ray bursts has shown that if the bursts are cosmological, then most
likely total energy (E_0) is standard and not peak luminosity (L_0). Assuming a
flat Friedmann cosmology (q_o = 1/2, Lambda = 0) and constant rate density
(rho_0) of bursting sources, we fit a standard candle energy to a uniformly
selected log N-log S in the BATSE 3B catalog correcting for fluence efficiency
and averaging over 48 observed spectral shapes. We find the data consistent
with E_0 = 7.3^{+0.7}_{-1.0} X 10^{51} ergs and discuss implications of this
energy for cosmological models of gamma-ray bursts.Comment: A five page LateX file that uses the Revtex conference proceedings
macro aipbook.sty, and includes three postscript figures using psfig. To Be
published in the Proceedings of the Third Hunstville Symposium on Gamma-Ray
Bursts, eds. C. Kouveliotou, M.S. Briggs and G.J. Fishman (New York:AIP).
Postscript version availible at http://nis-www.lanl.gov/~jsbloom/LOG_S.p
A recurrent neural network for classification of unevenly sampled variable stars
Astronomical surveys of celestial sources produce streams of noisy time
series measuring flux versus time ("light curves"). Unlike in many other
physical domains, however, large (and source-specific) temporal gaps in data
arise naturally due to intranight cadence choices as well as diurnal and
seasonal constraints. With nightly observations of millions of variable stars
and transients from upcoming surveys, efficient and accurate discovery and
classification techniques on noisy, irregularly sampled data must be employed
with minimal human-in-the-loop involvement. Machine learning for inference
tasks on such data traditionally requires the laborious hand-coding of
domain-specific numerical summaries of raw data ("features"). Here we present a
novel unsupervised autoencoding recurrent neural network (RNN) that makes
explicit use of sampling times and known heteroskedastic noise properties. When
trained on optical variable star catalogs, this network produces supervised
classification models that rival other best-in-class approaches. We find that
autoencoded features learned on one time-domain survey perform nearly as well
when applied to another survey. These networks can continue to learn from new
unlabeled observations and may be used in other unsupervised tasks such as
forecasting and anomaly detection.Comment: 23 pages, 14 figures. The published version is at Nature Astronomy
(https://www.nature.com/articles/s41550-017-0321-z). Source code for models,
experiments, and figures at
https://github.com/bnaul/IrregularTimeSeriesAutoencoderPaper (Zenodo Code
DOI: 10.5281/zenodo.1045560
Book Review: Meeting of Minds: Intellectual and Religious Interaction in East Asian Traditions of Thought
Meeting of Minds: Intellectual and Religious Interaction in East Asian Traditions of Thought, a volume of eleven essays written in honor of Wing-tsit Chan and William Theodore de Bary, proposes to explore how Confucian and Neo-Confucian traditions have responded to and have influenced other traditions (Buddhist, Taoist, folk, Japanese nativist, and so on) in China and Japan. The essays are arranged first geographically (seven articles on China precede four on Japan) and then roughly chronologically. All essays, save one, describe Sung or post-Sung developments. A few sentences per essay must suffice in this review. [excerpt
A New Low-Mass Eclipsing Binary from SDSS-II
We present observations of a new low-mass double-lined eclipsing binary
system discovered using repeat observations of the celestial equator from the
Sloan Digital Sky Survey II. Using near-infrared photometry and optical
spectroscopy we have measured the properties of this short-period
[P=0.407037(14) d] system and its two components. We find the following
parameters for the two components: M_1=0.272+/-0.020 M_sun, R_1=0.268+/-0.010
R_sun, M_2=0.240+/-0.022 M_sun, R_2=0.248+/-0.0090 R_sun, T_1=3320+/-130 K,
T_2=3300+/-130 K. The masses and radii of the two components of this system
agree well with theoretical expectations based on models of low-mass stars,
within the admittedly large errors. Future synoptic surveys like Pan-STARRS and
LSST will produce a wealth of information about low-mass eclipsing systems and
should make it possible, with an increased reliance on follow-up observations,
to detect many systems with low-mass and sub-stellar companions. With the large
numbers of objects for which these surveys will produce high-quality
photometry, we suggest that it becomes possible to identify such systems even
with sparse time sampling and a relatively small number of individual
observations.Comment: 15 Pages, 9 Figures, 6 Tables. Replaced with version accepted to Ap
The prompt energy release of gamma-ray bursts using a cosmological k-correction
The fluences of gamma-ray bursts (GRBs) are measured with a variety of
instruments in different detector energy ranges. A detailed comparison of the
implied energy releases of the GRB sample requires, then, an accurate
accounting of this diversity in fluence measurements which properly corrects
for the redshifting of GRB spectra. Here, we develop a methodology to
``k-correct'' the implied prompt energy release of a GRB to a fixed co-moving
bandpass. This allows us to homogenize the prompt energy release of 17
cosmological GRBs (using published redshifts, fluences, and spectra) to two
common co-moving bandpasses: 20-2000 keV and 0.1 keV-10 MeV (``bolometric'').
While the overall distribution of GRB energy releases does not change
significantly by using a k-correction, we show that uncorrected energy
estimates systematically undercounts the bolometric energy by ~5% to 600%,
depending on the particular GRB. We find that the median bolometric
isotropic-equivalent prompt energy release is 2.2 x 10^{53} erg with an r.m.s.
scatter of 0.80 dex. The typical estimated uncertainty on a given k-corrected
energy measurement is ~20%.Comment: Accepted to the Astronomical Journal. 21 pages (LaTeX) and 4 figure
- …
