239 research outputs found
Quantifying pulsed laser induced damage to grapheme
As an emerging optical material, graphene’s ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp2-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm2, an order-of-magnitude lower than measured and theoretical ablation thresholds
Using the Drosophila melanogaster D17-c3 cell culture system to study cell motility
Cultured Drosophila melanogaster S2 and S2R + cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitroscratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2–3 weeks
The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey
Large exoplanet surveys have successfully detected thousands of exoplanets
to-date. Utilizing these detections and non-detections to constrain our
understanding of the formation and evolution of planetary systems also requires
a detailed understanding of the basic properties of their host stars. We have
determined the basic stellar properties of F, K, and G stars in the Strategic
Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from echelle
spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT
to extract line equivalent widths and TGVIT to calculate the fundamental
parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity,
and the age for our sample. Our methodology was calibrated against previously
published results for a portion of our sample. The distribution of [Fe/H] in
our sample is consistent with that typical of the Solar neighborhood.
Additionally, we find the ages of most of our sample are , but note
that we cannot determine robust ages from significantly older stars via
chromospheric activity age indicators. The future meta-analysis of the
frequency of wide stellar and sub-stellar companions imaged via the SEEDS
survey will utilize our results to constrain the occurrence of detected
co-moving companions with the properties of their host stars.Comment: 22 Pages, 10 Figures, 5 Tables. Published in MNRA
Air quality and error quantity: pollution and performance in a high-skilled, quality-focused occupation
We provide the first evidence that short-term exposure to air pollution affects the work performance of a group of highly-skilled, quality-focused employees. We repeatedly observe the decision-making of individual professional baseball umpires, quasi-randomly assigned to varying air quality across time and space. Unique characteristics of this setting combined with high-frequency data disentangle effects of multiple pollutants and identify previously under-explored acute effects. We find a 1 ppm increase in 3-hour CO causes an 11.5% increase in the propensity of umpires to make incorrect calls and a 10 mg/m3 increase in 12-hour PM2.5 causes a 2.6% increase. We control carefully for a variety of potential confounders and results are supported by robustness and falsification checks
Osteoclast-mediated resorption primes the skeleton for successful integration during axolotl limb regeneration
Early events during axolotl limb regeneration include an immune response and the formation of a wound epithelium. These events are linked to a clearance of damaged tissue prior to blastema formation and regeneration of the missing structures. Here, we report the resorption of calcified skeletal tissue as an active, cell-driven, and highly regulated event. This process, carried out by osteoclasts, is essential for a successful integration of the newly formed skeleton. Indeed, the extent of resorption is directly correlated with the integration efficiency, and treatment with zoledronic acid resulted in osteoclast function inhibition and failed tissue integration. Moreover, we identified the wound epithelium as a regulator of skeletal resorption, likely releasing signals involved in recruitment/differentiation of osteoclasts. Finally, we reported a correlation between resorption and blastema formation, particularly, a coordination of resorption with cartilage condensation. In sum, our results identify resorption as a major event upon amputation, playing a critical role in the overall process of skeletal regeneration
The Moving Group Targets of the Seeds High-Contrast Imaging Survey of Exoplanets and Disks: Results and Observations from the First Three Years
We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of (is) approximately10(exp 5) at 1" and (is) approximately 10(exp 6) beyond 2" around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, beta Pictoris ((is) approximately 20 Myr), AB Doradus ((is) approximately 100 Myr), Columba ((is) approximately 30 Myr), Tucana-Horogium ((is) approximately 30 Myr), and TW Hydrae ((is) approximately 10 Myr), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca ii HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, kappa And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper
The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
Structures of Drosophila Msps TOG4 and human ch-TOG TOG4 are presented. TOG4 departs from the other TOG structures and predicts novel α-tubulin engagement. Whereas TOG domains across the array have different tubulin-binding properties, cellular studies show that a fully functional TOG array is required for microtubule polymerase activity.XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed tumor overexpressed gene (TOG) domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with α-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. Whereas a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse yet positionally conserved TOG array that drives MT polymerization
- …
