124 research outputs found

    Telomere, DNA Methylation and Gene Expression changes caused by exercise training

    Get PDF
    Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. Despite the clear benefits to health conferred by exercise training, our understanding of the underlying molecular mechanisms remain crude. The primary purpose of this thesis is to determine and analyse the molecular biology changes that occur with strenuous aerobic exercise. Specifically, the main objectives were to investigate the impact of strenuous aerobic exercise training on structural DNA modifications, measured in context with cardiovascular health and fitness adaptations. In the first part of this thesis I investigated the influence of endurance exercise training on leukocyte telomere length and cardiovascular health. Leukocyte telomere length reflects biological age. Indeed, excessively short leukocyte telomeres are associated with age-related chronic diseases. Epidemiological studies indicate endurance athletes live longer than people from the general public who do not engage in extensive aerobic exercise training. In Chapter 2, my literature review on the subject of exercise and telomere biology suggested that, at the time of this study, the impact of exercise training on leukocyte telomere length was equivocal. Therefore, to determine whether strenuous aerobic exercise training influences biological ageing (assessed by leukocyte telomere length), I conducted two cross-sectional studies on leukocyte telomere length differences between endurance athletes and healthy controls. The first study (Chapter 3) was a cross-sectional analysis of leukocyte telomere length between athletes and controls, determined by quantitative polymerase chain reaction (qPCR). This is a relative measurement of telomere length expressed as a telomere (T) to single copy gene (S) ratio. Relative to the healthy controls (n = 56), the ultra-marathon runners (n = 67) possessed 11% longer leukocyte telomeres in age-adjusted analysis (ultra-marathon runners vs controls; average T/S ratio: 3.56 vs 3.16, p = 1.4 × 10-4) and the difference was not explained by the favourable cardiovascular health profile exhibited by the athletes (p = 2.2 × 10-4). The difference in leukocyte telomere length indicated the athletes had reduced their biological age by 16.2 years. To elucidate the potential mechanism for the longer leukocyte telomeres observed in endurance athletes, I recruited another cohort of athletes and controls and measured leukocyte telomere length and gene expression of genes involved in telomere length regulation. In the second study (Chapter 4), I describe data replicating the finding that endurance athletes possess longer leukocyte telomeres compared to healthy controls (athletes v controls mean T/S ratio ± SE: 3.64 ± 0.06 vs 3.38 ± 0.06, p = 0.002). This difference was associated with a concomitant increased activity of two important telomere regulating genes, telomerase reverse transcriptase (TERT) and adrenocortical dysplasia homolog (TPP1) (2- fold and 1.3-fold, respectively, both p < 0.05). The difference in leukocyte telomere length and leukocyte telomere-regulating gene (TERT and TPP1 mRNA) expression was ameliorated after adjusting for maximal oxygen uptake and resting heart rate (all p > 0.05). This finding indicates that cardiorespiratory fitness is an important determinant of telomere biology. Together, these two cross-sectional studies suggest that regular endurance exercise training is associated with longer leukocytes telomeres and that this is likely achieved through higher TPP1 and TERT mRNA expression gained through improved cardiorespiratory fitness. The findings in Chapters 3 and 4 provide evidence for extensive endurance exercise training as an effective lifestyle strategy to attenuate biological ageing. In parallel to telomere length changes, epigenetic modifications (e.g. DNA methylation) caused by environmental factors alter the transcriptomic milieu of cells. My thorough literature review (Chapter 5) revealed that exercise training seems to rearrange chromatin by modifying the DNA methylome in a variety of cells and that the extent is dictated by exercise duration and intensity. Therefore, in the second part of my thesis, I investigated the DNA methylation changes in leukocytes (which are somatic cells) and sperm (male germ cells) from healthy men before and after sprint interval training (SIT). Unlike traditional, long duration training at moderate intensity training, SIT involves short, intense (>85% VO2max to supra-maximal) efforts followed by periods of rest (3–4 min), typically repeated 3–8 times. It is an effective type of training that improves cardiorespiratory fitness quicker than traditional long slow distance training. Thus, to establish the DNA methylome changes associated with SIT, I conducted two training studies and analysed the leukocyte and sperm methylomes using the Infinium HumanMethylation450 BeadChip (Illumina). My third study (Chapter 6) provides the first evidence showing an association between DNA methylation changes paralleled with improvements to lipid profile and cardiorespiratory fitness in humans. Twelve young men (18–24 years) undertook SIT (thrice weekly) for four weeks. Resting blood samples were obtained and whole-blood leukocytes were isolated by red blood cell lysis. Genome-wide DNA methylation was assessed using the 450K BeadChip (Illumina). Cardiorespiratory fitness, determined by maximal oxygen uptake, was improved by 2.1 ml.kg-1.min-1 and low-density lipo-protein cholesterol was decreased by 3.9% after SIT (p < 0.05). Notably, the leukocyte methylome was significantly affected by SIT, in regions throughout the genome in relation to CpG islands – CpG islands, North shores, N shelves, South shores and South shelve – and the nearest genes – 3’ untranslated region (UTR), 5’ UTR, exonic, intergenic, intronic, non-coding and promoter regions (all p < 0.001). Genes with differentially methylated CpG sites (q < 0.005) after SIT were enriched for cardiovascular gene ontology (GO) terms that included metabolic activity, biological adhesion and antioxidant activity. Similarly, pathway analysis revealed genes involved in focal adhesion, calcium signaling and mitogen activated protein kinase were modulated by SIT-induced DNA methylation changes. Amongst the 205,987 probes relating 32,445 transcripts differentially methylated after SIT (q < 0.05), with methylation changes between 0.1 – 62.8%, the largest and most statistically significant demethylated site was in the epidermal growth factor (EGF) gene, causing decreased mRNA expression. As with EGF, the microRNA-21 and microRNA-210 genes (MIR21 and MIR210, respectively), known for their roles in cardiovascular disease (ischemic heart disease and coronary atherosclerosis), had modest but consistently statistically significant DNA methylation changes at numerous CpG sites, which altered mature microRNA abundance. Together, these data suggest that genome-wide DNA methylation changes occur after short-term intense exercise training concurrently with improvements to blood cholesterol profile and cardiorespiratory fitness. The data presented in this thesis provided evidence that the epigenome of somatic cells is malleable to exercise. There is mounting evidence supporting the premise that environmental perturbations cause DNA methylation changes and these are subsequently transgenerationally inherited, altering phenotypes of future generations. In the current study I also asked the question; can exercise training reconfigure the DNA methylome of male germ cells (sperm)? Therefore, my next study (Chapter 7) entails an analysis of the impact that three months of SIT has on genome-wide DNA methylation of sperm in healthy men. Thirteen subjects undertook twice-weekly SIT for three months, while the controls were asked not to change their current physical activity habits (if any). Sperm samples were donated before and after the three-month intervention. Mature sperm were isolated using density gradient centrifugation and DNA was extracted using the Purelink Genomic DNA Mini Kit (Life Technologies). Global and genome-wide DNA methylation was assessed using an enzyme-linked immunosorbent assay-based kit and the 450K BeadChip (Illumina), respectively. Relative to controls, the cases decreased their resting heart rate and had a higher maximal treadmill speed during exercise testing (both p < 0.05). Cases had decreased global DNA methylation after SIT compared to controls (p < 0.05). Genome-wide DNA methylation analysis revealed numerous modest (0.3 – 6%) methylation changes to 7509 CpG sites, relating to 4602 transcripts (q ≤ 0.1). Differentially methylated CpG sites were in genes associated with developmental biology, which included GO terms, such as developmental process, anatomical structure, embryonic morphogenesis and organ development, together with known pathways regulated by exercise training (MAPK, ErbB and PI3K-Akt signalling). Genes with increased methylation were associated with numerous human diseases, with most overrepresented being psychiatric disorders (schizophrenia, Parkinson’s disease and autism). Notably, paternally imprinted genes associated with other diseases were also differentially methylated after SIT. Therefore, exercise training is associated with the modifications to genome-wide DNA methylation of both somatic and germ cells. In conclusion, the studies presented as a series of peer-reviewed publications, outlines investigations that describe an influence of strenuous exercise training on leukocyte telomere length regulation and the DNA methylome of both leukocytes and germ cells. Both of these molecular changes in leukocytes and sperm provide evidence for novel molecular mechanisms by which exercise improves cardiovascular health and fitness. Future investigations should focus on longitudinal studies determining whether these changes are required for improved health and fitness, and should establish whether exercise-induced DNA methylation changes are transgenerationally inherited, and if so, what impact this has to future generations. Such discoveries could change national physical activity guidelines and policies, by emphasising the benefit of regular exercise both in the present and to future offspring.Doctor of Philosoph

    Progressive overload in cardiorespiratory exercise training for young and old : is increasing duration or intensity of exercise more important?

    Get PDF
    People undertake endurance training to improve their health and cardio-respiratory fitness. Subsequent cardio-respiratory and skeletal muscle aerobic metabolic adaptations are gauged by improvements in maximum or peak oxygen uptake (V̇O2peak) and the blood lactate inflection point or threshold during incremental exercise – (LIP). To further improve physiological capability, subsequent homoeostatic disturbances from exercise should be progressively greater in succeeding exercise sessions. Therefore, exercise duration, frequency or intensity should be progressively increased during a training regimen to ensure adaptation potential is realized. A progressive increase in training workload is termed “progressive overload”. Despite the universal acknowledgment of the importance of progressive overload, it is unclear if systematically progressing altering either exercise intensity or duration (or distance covered) affect cardio-respiratory gains differently in young and older populations. As running faster results in higher heart rates and greater skeletal muscle metabolic stress than running the same distance at a lower speed, in this hypothesis we postulate that progressively increasing exercise run intensity will result in greater mean and higher incidence of V̇O2peak and LIP gains in young adults (&lt;50 years). However, the mechanisms that initiate improvements in cardio-respiratory fitness and skeletal muscle aerobic function may be different in older adults due to the inevitable aging decline in cardio-vascular function and mechanical and morphological properties of muscle–tendon units. In older adults (&gt;60 years) we hypothesize progressively increasing run distance while maintaining the same speed will just be as effective as to progressively increasing speed to improve V̇O2peak and LIP. To test these hypotheses, we propose a study that compares progressively increasing run intensity to a treatment of progressive matched run distance where speed remains constant in young and old adults. © 202

    The Effect of Resistance Training on Telomere Length in Women Recovering from Breast Cancer

    Get PDF
    The purpose of this exploratory analysis was to examine the effects of resistance training (RT) on leukocyte telomere length in breast cancer survivors. Samples from 33 breast cancer survivors were analysed following a 16-week RT or usual care intervention (RT: n = 19, control: n = 14). The RT group performed supervised exercise three times per week. Leukocyte telomere length was assessed before and after training using quantitative PCR. Changes in telomere length were analysed using ANCOVA, with the change score being the dependent variable, and the baseline value the covariate. Effect sizes (ES) were calculated via partial eta squared. We found a non-statistically significant change in telomere length, and a small associated ES in the RT group compared to the control group for change in telomere length (p = 0.78, ES = 0.003). Our exploratory study demonstrates that a 16-week RT intervention does not have a significant effect on telomere length in women recovering from breast cancer. Therefore, RT is a safe intervention that does not accelerate biological ageing

    Muscle-Enriched MicroRNAs Isolated from Whole Blood Are Regulated by Exercise and Are Potential Biomarkers of Cardiorespiratory Fitness

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (V˙O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and V˙ O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness

    Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging?

    Get PDF
    Immunosenescence is characterized by deterioration of the immune system caused by aging which induces changes to innate and adaptive immunity. Immunosenescence affects function and phenotype of immune cells, such as expression and function of receptors for immune cells which contributes to loss of immune function (chemotaxis, intracellular killing). Moreover, these alterations decrease the response to pathogens, which leads to several age-related diseases including cardiovascular disease, Alzheimer's disease, and diabetes in older individuals. Furthermore, increased risk of autoimmune disease and chronic infection is increased with an aging immune system, which is characterized by a pro-inflammatory environment, ultimately leading to accelerated biological aging. During the last century, sedentarism rose dramatically, with a concomitant increase in certain type of cancers (such as breast cancer, colon, or prostate cancer), and autoimmune disease. Numerous studies on physical activity and immunity, with focus on special populations (i.e., people with diabetes, HIV patients) demonstrate that chronic exercise enhances immunity. However, the majority of previous work has focused on either a pathological population or healthy young adults whilst research in elderly populations is scarce. Research conducted to date has primarily focused on aerobic and resistance exercise training and its effect on immunity. This review focuses on the potential for exercise training to affect the aging immune system. The concept is that some lifestyle strategies such as high-intensity exercise training may prevent disease through the attenuation of immunosenescence. In this context, we take a top-down approach and review the effect of exercise and training on immunological parameters in elderly at rest and during exercise in humans, and how they respond to different modes of training. We highlight the impact of these different exercise modes on immunological parameters, such as cytokine and lymphocyte concentration in elderly individuals

    Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres

    Get PDF
    Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative (V) over dotO(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits

    Small non-coding RNAs are altered by short-term sprint interval training in men

    Get PDF
    Small non-coding RNAs (ncRNAs) are emerging as important molecules for normal biological processes and are deregulated in disease. Exercise training is a powerful therapeutic strategy that prevents cardiometabolic disease and improves cardiorespiratory fitness and performance. Despite the known systemic health benefits of exercise training, the underlying molecular mechanisms are incompletely understood. Recent evidence suggests a role for epigenetic mechanisms, such as microRNAs, but whether other small ncRNAs are modulated by chronic exercise training is unknown. Here, we used small RNA sequencing to explore whether sprint interval training (SIT) controls the abundance of circulating small ncRNAs in human whole blood samples. Ten healthy men performed SIT three times a week for 6 weeks. After training, subjects showed marked improvements in maximal oxygen consumption and cycling performance with concurrent changes to the abundance of diverse species of circulating small ncRNAs (n = 1266 small ncRNAs, n = 13 microRNAs, q n = 24, all P &gt; 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT-induced fold change in miR-1301-3p ( 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT-induced fold change in miR-1301-3p (P = 0.02) – a microRNA predicted to target mRNAs involved in alternative splicing, phosphoprotein and chromosomal rearrangement processes (all

    Efficacy of a student-led interprofessional health clinic in regional Australia for preventing and managing chronic disease

    Get PDF
    Increasing chronic disease rates in regional Australian communities necessitates innovative models of healthcare. We evaluated the efficacy of an interprofessional chronic disease program, delivered within a regional student-led nursing and allied health clinic in Southern Queensland, Australia. Changes to anthropometric, aerobic fitness and strength, and quality of life outcomes were examined at four time points spanning 16 months: intake, program transition (4 months), 6 and 12 months (post-transition). Our primary aim was to investigate whether the health improvements achieved during the program were sustained at 12 months in a subset of participants who provided complete data. Significant improvements were found in 6 of 11 measures, including the 6-minute walk test, grip strength, and self-reported quality of life across physical and psychosocial dimensions, with these improvements maintained to final review. No significant changes were found in body mass index (BMI), waist circumference, fat mass, or muscle mass. This is the first health clinic in regional Australia to deliver a student-led model of interprofessional and collaborative service to tackle the increasing burden of chronic disease in the community. The cost-effectiveness of this service and other potential clinical and social benefits remain to be investigated

    Regular, intense exercise training as a healthy aging lifestyle strategy: preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime

    Get PDF
    Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. The length of telomeres, the 5 '-TTAGGG(n)-3 ' tandem repeats at the ends of mammalian chromosomes, is one of the main indicators of biological age. Telomeres undergo shortening with each cellular division. This subsequently leads to alterations in the expression of several genes that encode vital proteins with critical functions in many tissues throughout the body, and ultimately impacts cardiovascular, immune and muscle physiology. The sub-telomeric DNA is comprised of heavily methylated, heterochromatin. Methylation and histone acetylation are two of the most well-studied examples of the epigenetic modifications that occur on histone proteins. DNA methylation is the type of epigenetic modification that alters gene expression without modifying gene sequence. Although diet, genetic predisposition and a healthy lifestyle seem to alter DNA methylation and telomere length (TL), recent evidence suggests that training status or physical fitness are some of the major factors that control DNA structural modifications. In fact, TL is positively associated with cardiorespiratory fitness, physical activity level (sedentary, active, moderately trained, or elite) and training intensity, but is shorter in over-trained athletes. Similarly, somatic cells are vulnerable to exercise-induced epigenetic modification, including DNA methylation. Exercise-training load, however, depends on intensity and volume (duration and frequency). Training load-dependent responses in genomic profiles could underpin the discordant physiological and physical responses to exercise. In the current review, we will discuss the role of various forms of exercise training in the regulation of DNA damage, TL and DNA methylation status in humans, to provide an update on the influence exercise training has on biological aging
    corecore