3,081 research outputs found
A Multiple Step-like Spectrum of Primordial Perturbation
We show that if the inflaton effective potential has multiple discontinuous
points in its first derivative, the spectrum of primordial perturbation will be
multiple step-like. We give a general analysis by applying a simple model. In
principle, as long as the height of step is low enough, the result of spectrum
will be consistent with observations.Comment: minor changes and Refs. added, publish in PL
Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest
Recommended from our members
Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade.
Saturated fatty acids (SFAs) (the "bad" fat), especially palmitate (PA), in the human diet are blamed for potential health risks such as obesity and cancer because of SFA-induced lipotoxicity. However, epidemiological results demonstrate a latent benefit of SFAs, and it remains elusive whether a certain low level of SFAs is physiologically essential for maintaining cell metabolic hemostasis. Here, we demonstrate that although high-level PA (HPA) indeed induces lipotoxic effects in liver cells, low-level PA (LPA) increases mitochondrial functions and alleviates the injuries induced by HPA or hepatoxic agent carbon tetrachloride (CCl4). LPA treatment in mice enhanced liver mitochondrial activity and reduced CCl4 hepatotoxicity with improved blood levels of aspartate aminotransferase (AST), alanine transaminase (ALT), and mitochondrial aspartate transaminase (m-AST). LPA-mediated mitochondrial homeostasis is regulated by CDK1-mediated SIRT3 phosphorylation, which in turn deacetylates and dimerizes CPT2 to enhance fatty acid oxidation. Thus, an advantageous effect is suggested by the consumption of LPA that augments mitochondrial metabolic homeostasis via CDK1-SIRT3-CPT2 cascade
Recommended from our members
Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from −11 g C m−2 (weak CO2source) to 85 g C m−2 (moderate CO2 sink). The models generally predicted greater annual CO2sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower “footprint.” At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions
Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy
We have studied the local electronic structure of LaMn0.5Co0.5O3 using
soft-x-ray absorption spectroscopy at the Co-L_3,2 and Mn-L_3,2 edges. We found
a high-spin Co^{2+}--Mn^{4+} valence state for samples with the optimal Curie
temperature. We discovered that samples with lower Curie temperatures contain
low-spin nonmagnetic Co^{3+} ions. Using soft-x-ray magnetic circular dichroism
we established that the Co^{2+} and Mn^{4+} ions are ferromagnetically aligned.
We revealed also that the Co^{2+} ions have a large orbital moment:
m_orb/m_spin ~ 0.47. Together with model calculations, this suggests the
presence of a large magnetocrystalline anisotropy in the material and predicts
a non-trivial temperature dependence for the magnetic susceptibility.Comment: 8 pages, 7 figure
N-Terminal Pro–B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study
Background
Contemporary reconsideration of diagnostic N-terminal pro–B-type natriuretic peptide (NT-proBNP) cutoffs for diagnosis of heart failure (HF) is needed.
Objectives
This study sought to evaluate the diagnostic performance of NT-proBNP for acute HF in patients with dyspnea in the emergency department (ED) setting.
Methods
Dyspneic patients presenting to 19 EDs in North America were enrolled and had blood drawn for subsequent NT-proBNP measurement. Primary endpoints were positive predictive values of age-stratified cutoffs (450, 900, and 1,800 pg/ml) for diagnosis of acute HF and negative predictive value of the rule-out cutoff to exclude acute HF. Secondary endpoints included sensitivity, specificity, and positive (+) and negative (−) likelihood ratios (LRs) for acute HF.
Results
Of 1,461 subjects, 277 (19%) were adjudicated as having acute HF. The area under the receiver-operating characteristic curve for diagnosis of acute HF was 0.91 (95% confidence interval [CI]: 0.90 to 0.93; p < 0.001). Sensitivity for age stratified cutoffs of 450, 900, and 1,800 pg/ml was 85.7%, 79.3%, and 75.9%, respectively; specificity was 93.9%, 84.0%, and 75.0%, respectively. Positive predictive values were 53.6%, 58.4%, and 62.0%, respectively. Overall LR+ across age-dependent cutoffs was 5.99 (95% CI: 5.05 to 6.93); individual LR+ for age-dependent cutoffs was 14.08, 4.95, and 3.03, respectively. The sensitivity and negative predictive value for the rule-out cutoff of 300 pg/ml were 93.9% and 98.0%, respectively; LR− was 0.09 (95% CI: 0.05 to 0.13).
Conclusions
In acutely dyspneic patients seen in the ED setting, age-stratified NT-proBNP cutpoints may aid in the diagnosis of acute HF. An NT-proBNP <300 pg/ml strongly excludes the presence of acute HF
Stability of a neural network model with small-world connections
Small-world networks are highly clustered networks with small distances among
the nodes. There are many biological neural networks that present this kind of
connections. There are no special weightings in the connections of most
existing small-world network models. However, this kind of simply-connected
models cannot characterize biological neural networks, in which there are
different weights in synaptic connections. In this paper, we present a neural
network model with weighted small-world connections, and further investigate
the stability of this model.Comment: 4 pages, 3 figure
ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.
The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa
- …
