135 research outputs found
Application of a Self-Similar Pressure Profile to Sunyaev-Zel'dovich Effect Data from Galaxy Clusters
We investigate the utility of a new, self-similar pressure profile for
fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current
SZ imaging instruments - such as the Sunyaev-Zel'dovich Array (SZA) - are
capable of probing clusters over a large range in physical scale. A model is
therefore required that can accurately describe a cluster's pressure profile
over a broad range of radii, from the core of the cluster out to a significant
fraction of the virial radius. In the analysis presented here, we fit a radial
pressure profile derived from simulations and detailed X-ray analysis of
relaxed clusters to SZA observations of three clusters with exceptionally high
quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis
of the SZ and X-ray data, we derive physical properties such as gas mass, total
mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find
that parameters derived from the joint fit to the SZ and X-ray data agree well
with a detailed, independent X-ray-only analysis of the same clusters. In
particular, we find that, when combined with X-ray imaging data, this new
pressure profile yields an independent electron radial temperature profile that
is in good agreement with spectroscopic X-ray measurements.Comment: 28 pages, 6 figures, accepted by ApJ for publication (probably April
2009
Radio Sources from a 31 GHz Sky Survey with the Sunyaev-Zel'dovich Array
We present the first sample of 31-GHz selected sources to flux levels of 1
mJy. From late 2005 to mid 2007, the Sunyaev-Zel'dovich Array (SZA) observed
7.7 square degrees of the sky at 31 GHz to a median rms of 0.18 mJy/beam. We
identify 209 sources at greater than 5 sigma significance in the 31 GHz maps,
ranging in flux from 0.7 mJy to ~200 mJy. Archival NVSS data at 1.4 GHz and
observations at 5 GHz with the Very Large Array are used to characterize the
sources. We determine the maximum-likelihood integrated source count to be
N(>S) = (27.2 +- 2.5) deg^-2 x (S_mJy)^(-1.18 +- 0.12) over the flux range 0.7
- 15 mJy. This result is significantly higher than predictions based on 1.4-GHz
selected samples, a discrepancy which can be explained by a small shift in the
spectral index distribution for faint 1.4-GHz sources. From comparison with
previous measurements of sources within the central arcminute of massive
clusters, we derive an overdensity of 6.8 +- 4.4, relative to field sources.Comment: 13 pages, 5 figure
Joint analysis of X-ray and Sunyaev Zel'dovich observations of galaxy clusters using an analytic model of the intra-cluster medium
We perform a joint analysis of X-ray and Sunyaev Zel'dovich (SZ) effect data
using an analytic model that describes the gas properties of galaxy clusters.
The joint analysis allows the measurement of the cluster gas mass fraction
profile and Hubble constant independent of cosmological parameters. Weak
cosmological priors are used to calculate the overdensity radius within which
the gas mass fractions are reported. Such an analysis can provide direct
constraints on the evolution of the cluster gas mass fraction with redshift. We
validate the model and the joint analysis on high signal-to-noise data from the
Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters,
Abell 2631 and Abell 2204.Comment: ApJ in pres
Sunyaev Zel'dovich Effect Observations of Strong Lensing Galaxy Clusters: Probing the Over-Concentration Problem
We have measured the Sunyaev Zel'dovich (SZ) effect for a sample of ten
strong lensing selected galaxy clusters using the Sunyaev Zel'dovich Array
(SZA). The SZA is sensitive to structures on spatial scales of a few
arcminutes, while the strong lensing mass modeling constrains the mass at small
scales (typically < 30"). Combining the two provides information about the
projected concentrations of the strong lensing clusters. The Einstein radii we
measure are twice as large as expected given the masses inferred from SZ
scaling relations. A Monte Carlo simulation indicates that a sample randomly
drawn from the expected distribution would have a larger median Einstein radius
than the observed clusters about 3% of the time. The implied overconcentration
has been noted in previous studies with smaller samples of lensing clusters. It
persists for this sample, with the caveat that this could result from a
systematic effect such as if the gas fractions of the strong lensing clusters
are substantially below what is expected.Comment: submitte
CARMA Measurements of the Sunyaev-Zel'dovich Effect in RXJ1347.5-1145
We demonstrate the Sunyaev-Zel'dovich (SZ) effect imaging capabilities of the
Combined Array for Research in Millimeter-wave Astronomy (CARMA) by presenting
an SZ map of the galaxy cluster RXJ1347.5-1145. By combining data from multiple
CARMA bands and configurations, we are able to capture the structure of this
cluster over a wide range of angular scales, from its bulk properties to its
core morphology. We find that roughly 9% of this cluster's thermal energy is
associated with sub-arcminute-scale structure imparted by a merger,
illustrating the value of high-resolution SZ measurements for pursuing cluster
astrophysics and for understanding the scatter in SZ scaling relations. We also
find that the cluster's SZ signal is lower in amplitude than suggested by a
spherically-symmetric model derived from X-ray data, consistent with
compression along the line of sight relative to the plane of the sky. Finally,
we discuss the impact of upgrades currently in progress that will further
enhance CARMA's power as an SZ imaging instrument.Comment: 8 pages, 6 figure
LoCuSS: A Comparison of Sunyaev-Zel'dovich Effect and Gravitational Lensing Measurements of Galaxy Clusters
We present the first measurement of the relationship between the
Sunyaev-Zel'dovich effect signal and the mass of galaxy clusters that uses
gravitational lensing to measure cluster mass, based on 14 X-ray luminous
clusters at z~0.2 from the Local Cluster Substructure Survey. We measure the
integrated Compton y-parameter, Y, and total projected mass of the clusters
(M_GL) within a projected clustercentric radius of 350 kpc, corresponding to
mean overdensities of 4000-8000 relative to the critical density. We find
self-similar scaling between M_GL and Y, with a scatter in mass at fixed Y of
32%. This scatter exceeds that predicted from numerical cluster simulations,
however, it is smaller than comparable measurements of the scatter in mass at
fixed T_X. We also find no evidence of segregation in Y between disturbed and
undisturbed clusters, as had been seen with T_X on the same physical scales. We
compare our scaling relation to the Bonamente et al. relation based on mass
measurements that assume hydrostatic equilibrium, finding no evidence for a
hydrostatic mass bias in cluster cores (M_GL = 0.98+/-0.13 M_HSE), consistent
with both predictions from numerical simulations and lensing/X-ray-based
measurements of mass-observable scaling relations at larger radii. Overall our
results suggest that the Sunyaev-Zel'dovich effect may be less sensitive than
X-ray observations to the details of cluster physics in cluster cores.Comment: Minor changes to match published version: 2009 ApJL 701:114-11
Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array
We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high-redshift (0.89 ≤ z ≤ 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer—the Sunyaev-Zel'dovich Array (SZA)—built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9^(+0.5)_(-0.4) × 10^(14) M_☉ for Cl J1415.1+3612, 3.4^(+0.6)_(-0.5) × 10^(14) M_☉ for Cl J1429.0+4241, and 7.2^(+1.3)_(-0.9) × 10^(14) M_☉ for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements
LoCuSS: The Sunyaev-Zel'dovich Effect and Weak Lensing Mass Scaling Relation
We present the first weak-lensing-based scaling relation between galaxy
cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18
galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the
Sunyaev-Zel'dovich Array. The M_wl-Y_sph scaling relations, measured at
Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with
previous results derived under the assumption of hydrostatic equilibrium (HSE).
We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both
previous measurements of M_HSE-Y_sph scatter as well as the scatter in true
mass at fixed Y_sph found in simulations. Moreover, the scatter in our
lensing-based scaling relations is morphology dependent, with 30-40% larger
M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500.
Further examination suggests that the segregation may be explained by the
inability of our spherical lens models to faithfully describe the
three-dimensional structure of the clusters, in particular, the structure along
the line-of-sight. We find that the ellipticity of the brightest cluster
galaxy, a proxy for halo orientation, correlates well with the offset in mass
from the mean scaling relation, which supports this picture. This provides
empirical evidence that line-of-sight projection effects are an important
systematic uncertainty in lensing-based scaling relations.Comment: Accepted versio
- …
