8,783 research outputs found
Combining Spot and Futures Markets: A Hybrid Market Approach to Dynamic Spectrum Access
Dynamic spectrum access is a new paradigm of secondary spectrum utilization
and sharing. It allows unlicensed secondary users (SUs) to exploit
opportunistically the under-utilized licensed spectrum. Market mechanism is a
widely-used promising means to regulate the consuming behaviours of users and,
hence, achieves the efficient allocation and consumption of limited resources.
In this paper, we propose and study a hybrid secondary spectrum market
consisting of both the futures market and the spot market, in which SUs
(buyers) purchase under-utilized licensed spectrum from a spectrum regulator,
either through predefined contracts via the futures market, or through spot
transactions via the spot market. We focus on the optimal spectrum allocation
among SUs in an exogenous hybrid market that maximizes the secondary spectrum
utilization efficiency. The problem is challenging due to the stochasticity and
asymmetry of network information. To solve this problem, we first derive an
off-line optimal allocation policy that maximizes the ex-ante expected spectrum
utilization efficiency based on the stochastic distribution of network
information. We then propose an on-line VickreyCClarkeCGroves (VCG) auction
that determines the real-time allocation and pricing of every spectrum based on
the realized network information and the pre-derived off-line policy. We
further show that with the spatial frequency reuse, the proposed VCG auction is
NP-hard; hence, it is not suitable for on-line implementation, especially in a
large-scale market. To this end, we propose a heuristics approach based on an
on-line VCG-like mechanism with polynomial-time complexity, and further
characterize the corresponding performance loss bound analytically. We finally
provide extensive numerical results to evaluate the performance of the proposed
solutions.Comment: This manuscript is the complete technical report for the journal
version published in INFORMS Operations Researc
SUVH1, a Su(var)3-9 family member, promotes the expression of genes targeted by DNA methylation.
Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3-9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3-9 family that has previously been associated with silencing through H3K9 methylation
Vertical Structure of Neutrino-Dominated Accretion Disk and Applications to Gamma-Ray Bursts
We revisit the vertical structure of neutrino-dominated accretion flows in
spherical coordinates. We stress that the flow should be geometrically thick
when advection becomes dominant. In our calculation, the luminosity of neutrino
annihilation is enhanced by one or two orders of magnitude. The empty funnel
along the rotation axis can naturally explain the neutrino annihilable
ejection.Comment: 13 pages, 3 figures, accepted for publication in Ap
Metropolitan all-pass and inter-city quantum communication network
We have demonstrated a metropolitan all-pass quantum communication network in
field fiber for four nodes. Any two nodes of them can be connected in the
network to perform quantum key distribution (QKD). An optical switching module
is presented that enables arbitrary 2-connectivity among output ports.
Integrated QKD terminals are worked out, which can operate either as a
transmitter, a receiver, or even both at the same time. Furthermore, an
additional link in another city of 60 km fiber (up to 130 km) is seamless
integrated into this network based on a trusted relay architecture. On all the
links, we have implemented protocol of decoy state scheme. All of necessary
electrical hardware, synchronization, feedback control, network software,
execution of QKD protocols are made by tailored designing, which allow a
completely automatical and stable running. Our system has been put into
operation in Hefei in August 2009, and publicly demonstrated during an
evaluation conference on quantum network organized by the Chinese Academy of
Sciences on August 29, 2009. Real-time voice telephone with one-time pad
encoding between any two of the five nodes (four all-pass nodes plus one
additional node through relay) is successfully established in the network
within 60km.Comment: 9 pages, 2 figures, 2 table
Antigenically dominant proteins within the human liver mitochondrial proteome identified by monoclonal antibodies
The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status.
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing
Bends and splitters in graphene nanoribbon waveguides
We investigate the performance of bends and splitters in graphene nanoribbon
waveguides. Although the graphene waveguides are lossy themselves, we show that
bends and splitters do not induce any additional loss provided that the
nanoribbon width is sub-wavelength. We use transmission line theory to
qualitatively interpret the behavior observed in our simulation. Our results
pave a promising way to realize ultra-compact devices operating in the
terahertz region.Comment: 7 pages, including 4 figure
- …
