11,694 research outputs found

    Dynamics and control of the satellite power system

    Get PDF
    An investigation of the dynamics and control problems specifically related to the Satellite Power System (SPS), to assess performance of selected control concepts, and to identify and initiate development of advanced control technology that would enhance feasibility and performance of the SPS system was made. The initial stages of the study are reported

    Robust eigensystem assignment for second-order estimators

    Get PDF
    An approach for the robust eigensystem assignment of flexible structures using full state or output feedback is developed. Using the second-order dynamic equations, the approach can assign the eigenvalues of the system via velocity and displacement feedbacks, or acceleration and velocity feedbacks. The eigenvalues and eigenvectors of the system are assigned, via the second-order eigenvalue problem for the structural system, in two steps. First, an orthonormal basis spanning the attainable closed-loop eigenvector space corresponding to each desired closed-loop eigenvalue is generated using the Singular Value or QR decompositions. Second, a sequential procedure is used to choose a set of closed-loop eigenvectors that are as close as possible to the column space of a well-conditioned target matrix. Among the possible choices of the target matrix, the closest unitary matrix to the open-loop eigenvector matrix appears to be a suitable choice. A numerical example is given to illustrate the proposed algorithm

    Research in slewing and tracking control

    Get PDF
    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the Space Station and the Radiometer Spacecraft. A generic space station model is used to experimentally evaluate current control technologies and a radiometer spacecraft model is used to numerically test a new theoretical development for nonlinear three-axis maneuvers. Active suppression of flexible body vibrations induced by large angle maneuvers is studied with multiple torque inputs and multiple measurement outputs. These active suppression tests identify the hardware requirements and adequacy of various controller designs

    Linear system identification via backward-time observer models

    Get PDF
    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works

    Noncircular rolling joints for vibrational reduction in slewing maneuvers

    Get PDF
    A rolling joint is provided for obtaining slewing maneuvers for various apparatus including space structures, space vehicles, robotic manipulators, and simulators. Two noncircular cylinders, namely a drive and a driven cylinder, are provided in driving contact with one another. This contact is maintained by two pairs of generally S-shaped bands, each pair forming a generally 8-shaped coupling tightly about the circumferential periphery of the noncircular drive and driven cylinders. A stationarily fixed arm extends between and is rotatably journalled with a drive axle and a spindle axle respectively extending through selected rotational points of the drive cylinder and of the driven cylinder. The noncircular cylinders are profiled to obtain the desired varying gear ratio. The novelty of the present invention resides in using specifically profiled noncircular cylinders to obtain a desired varying gear ratio

    On Markov parameters in system identification

    Get PDF
    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest
    corecore