1,965 research outputs found

    Equal Employment Opportunity Commission v. First Watch Restaurants, Inc.

    Get PDF

    Velocity distributions of H and OH produced through solar photodissociation of H2O

    Get PDF
    The calculated velocity distributions of atomic hydrogen and hydroxyl radicals produced through solar photodissociation of gaseous water molecules are presented. Under collisionless conditions, the calculation was carried out using the most recent available data for the production of H and OH through photodissociation of H2O from its dissociation onset throughout the EUV region. Because the lack of data in certain spectral regions, only upper and lower bounds to the velocity distributions can be obtained. The results show that the H atoms and OH radicals produced exhibit multiple velocity groups. Since most of the current cometary modeling uses a single velocity of 20 km/s associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of cometary atomic hydrogen

    What can we learn about solar coronal mass ejections, coronal dimmings, and Extreme-Ultraviolet jets through spectroscopic observations?

    Full text link
    We analyze several data sets obtained by Hinode/EIS and find various types of flows during CMEs and EUV jet eruptions. CME-induced dimming regions are found to be characterized by significant blueshift and enhanced line width by using a single Gaussian fit. While a red-blue (RB) asymmetry analysis and a RB-guided double Gaussian fit of the coronal line profiles indicate that these are likely caused by the superposition of a strong background emission component and a relatively weak (~10%) high-speed (~100 km s-1) upflow component. This finding suggests that the outflow velocity in the dimming region is probably of the order of 100 km s-1, not ~20 km s-1 as reported previously. Density and temperature diagnostics suggest that dimming is primarily an effect of density decrease rather than temperature change. The mass losses in dimming regions as estimated from different methods are roughly consistent with each other and they are 20%-60% of the masses of the associated CMEs. With the guide of RB asymmetry analysis, we also find several temperature-dependent outflows (speed increases with temperature) immediately outside the (deepest) dimming region. In an erupted CME loop and an EUV jet, profiles of emission lines formed at coronal and transition region temperatures are found to exhibit two well-separated components, an almost stationary component accounting for the background emission and a highly blueshifted (~200 km s-1) component representing emission from the erupting material. The two components can easily be decomposed through a double Gaussian fit and we can diagnose the electron density, temperature and mass of the ejecta. Combining the speed of the blueshifted component and the projected speed of the erupting material derived from simultaneous imaging observations, we can calculate the real speed of the ejecta.Comment: 20 figures. Ready for publication in ApJ. The quality of Figures 4,5 15 & 20 is greatly reduced as a result of the requirement of the size limit of arXiv.org. High-quality version of these figures can be found in http://download.hao.ucar.edu/pub/htian

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic

    Initial-Final Mass Relationship for Stars of Different Metallicities

    Full text link
    Following Paczy\'{n}ski & Zi\'{o}lkowski (1968) and Han et al. (1994), we assume that the envelope of an asymptotic giant branch (AGB) or a first giant branch (FGB) star is lost when the binding energy of the envelope is equal to zero (ΔW=0\Delta W=0) and the core mass of the AGB star or the FGB star at the point (ΔW=0\Delta W=0) is taken as the final mass. Using this assumption, we calculate the IFMRs for stars of different metallicities.We find that the IFMRs depends strongly on the metallicity, i.e. Z=0.0001,0.0003,0.001,0.004,0.01,0.02,0.03,0.04,0.05,0.06,0.08Z=0.0001, 0.0003, 0.001, 0.004, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08 and 0.1. From Z=0.04Z=0.04, the final mass of the stars with a given initial mass increases with increasing or decreasing metallicity. The difference of the final mass due to the metallicity may be up to 0.4 MM_{\odot}. A linear fit of the initial-final mass relationship in NGC 2099 (M37) shows a potential evidence of the effect of metallicity on the IFMR. The IFMR for stars of Z=0.02Z=0.02 obtained in the paper matches well with those inferred observationally in the Galaxy. For Z0.02Z\geq 0.02, helium WDs are obtained from the stars of Mi1.0MM_{\rm i}\leq 1.0 M_{\odot} and this result is upheld by the discovery of numerous low-mass WDs in NGC 6791 which is a metal-rich old open cluster. Using the IFMR for stars of Z=0.02Z=0.02 obtained in the paper, we have reproduced the mass distribution of DA WDs in Sloan DR4 except for some ultra-massive white dwarfs. The trend that the mean mass of WDs decreases with effective temperature may originate from the increase of the initial metallicities of stars. We predict that metal-rich low-mass stars may become under-massive white dwarfs.Comment: 14 pages, 8 figures, accepted for publication in A&

    Chromosphere of K giant stars Geometrical extent and spatial structure detection

    Full text link
    We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars. We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Halpha and the Ca II infrared triplet line cores. For beta Ceti, spectro-interferometric observations are compared to an non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars. The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of ? Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a differential signal showing the presence of asymmetries in the chromospheres. Conclusions. It is the first time that geometrical extents and structure in the chromospheres of non-binary K giant stars are determined by interferometry. These observations provide strong constrains on stellar atmosphere models.Comment: 10 pages, 12 figure

    The close circumstellar environment of the semi-regular S-type star Pi^1 Gruis

    Full text link
    We study the close circumstellar environment of the nearby S-type star Pi^1 Gruis using high spatial-resolution, mid-infrared observations from the ESO/VLTI. Spectra and visibilities were obtained with the MIDI interferometer on the VLT Auxiliary Telescopes. The cool M5III giant Beta Gruis was used as bright primary calibrator, and a dedicated spectro-interferometric study was undertaken to determine its angular diameter accurately. The MIDI measurements were fitted with the 1D numerical radiative transfer code DUSTY to determine the dust shell parameters of Pi^1 Gruis. Taking into account the low spatial extension of the model in the 8-9 μ\mum spectral band for the smallest projected baselines, we consider the possibility of a supplementary molecular shell. The MIDI visibility and phase data are mostly dominated by the spherical 21 mas (694 Rsol) central star, while the extended dusty environment is over-resolved even with the shortest baselines. No obvious departure from spherical symmetry is found on the milliarcsecond scale. The spectro-interferometric observations are well-fitted by an optically thin (tau(dust)<0.01 in the band) dust shell that is located at about 14 stellar radii with a typical temperature of 700 K and composed of 70% silicate and 30% of amorphous alumina grains. An optically thin (tau(mol)<0.1 in the N band) H2O+SiO molecular shell extending from the photosphere of the star up to 4.4 stellar radii with a typical temperature of 1000 K is added to the model to improve the fit in the 8-9 μ\mum spectral band. We discuss the probable binary origin of asymmetries as revealed by millimetric observations

    Judy Calibuso et al. v. Bank of America Corporation et al.

    Get PDF

    How can indigenous research contribute to universal knowledge?: an illustration with research on interpersonal harmony

    Get PDF
    The indigenous perspective can provide a more complete, in‐depth, and accurate account of psychological phenomena for a given culture, but a major issue is that indigenous research tends to be ignored by researchers from other cultures. Chinese researchers who conduct research on indigenous issues may find it hard to publish in major English‐language journals. This paper explores how Chinese indigenous research is able to contribute to universal knowledge. Chinese are characterized by a relational and collectivistic orientation, whereas theories in the West tend to have a self‐focus, primarily due to its individualistic culture. However, most psychological research conducted in the Chinese context is guided by Western theories, which likely results in incomplete understanding of Chinese behavior. A relational perspective can augment Western theories and facilitate the contribution of Chinese indigenous research to new theory development. To illustrate this possibility, this article summarizes current indigenous research on two harmony motives, and shows how such research can contribute to a compelling refinement and extension of social exchange theory
    corecore