70 research outputs found
Chronic Nicotine Modifies Skeletal Muscle Na,K-ATPase Activity through Its Interaction with the Nicotinic Acetylcholine Receptor and Phospholemman
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21–31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (−4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM
<i>S100A1: a physiological modulator of RYR1, Ca<sup>2+</sup> release, and contractility in skeletal muscle.</i> Focus on “S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle”
A Four Electrode Method to Study Dynamics of Ion Activity and Transport in Skeletal Muscle Fibers
ABSTRACTIon movements across biological membranes, driven by electrochemical gradients or active transport mechanisms, control essential cell functions. Membrane ion movements can manifest as electrogenic currents or electroneutral fluxes, and either process can alter the extracellular and/or intracellular concentration of the transported ion(s). Classical electrophysiological methods allow accurate measurement of membrane ion movements when the transport mechanism produces a net ionic current; however, they cannot directly measure electroneutral fluxes and do not detect any accompanying change in intracellular ion concentrations.Here, we developed a method for simultaneously measuring ion movements and the accompanying dynamic changes in intracellular ion concentration(s) in intact skeletal muscle fibers under voltage– or current clamp in real time. The method combines a two-microelectrode voltage-clamp with ion-selective and reference microelectrodes (4 electrode system). We validate the electrical stability of the system and the viability of the preparation for periods of approximately 1 h. We demonstrate the power of this method with measurements of intracellular Cl-, H+, and Na+ to show: 1) voltage-dependent redistribution of Cl- ions; 2) intracellular pH changes induced by changes in extracellular pCO2; and 3) electroneutral and electrogenic Na+ movements controlled by the Na,K-ATPase. The method is useful for studying a range of transport mechanisms in many cell types, particularly when the transmembrane ion movements are electrically silent and/or when the transport activity measurably changes the intracellular activity of a transported ion.</jats:p
- …
