429 research outputs found
Fuzzy Authentication using Rank Distance
Fuzzy authentication allows authentication based on the fuzzy matching of two
objects, for example based on the similarity of two strings in the Hamming
metric, or on the similiarity of two sets in the set difference metric. Aim of
this paper is to show other models and algorithms of secure fuzzy
authentication, which can be performed using the rank metric. A few schemes are
presented which can then be applied in different scenarios and applications.Comment: to appear in Cryptography and Physical Layer Security, Lecture Notes
in Electrical Engineering, Springe
In Things We Trust? Towards trustability in the Internet of Things
This essay discusses the main privacy, security and trustability issues with
the Internet of Things
A Secure and Privacy-Preserving Targeted Ad-System
Thanks to its low product-promotion cost and its efficiency, targeted online advertising has become very popular. Unfortunately, being profile-based, online advertising methods violate consumers' privacy, which has engendered resistance to the ads. However, protecting privacy through anonymity seems to encourage click-fraud. In this paper, we define consumer's privacy and present a privacy-preserving, targeted ad system (PPOAd) which is resistant towards click fraud. Our scheme is structured to provide financial incentives to to all entities involved
An Anonymous Credit Card System
Credit cards have many important benefits; however, these same benefits often carry with them many privacy concerns. In particular, the need for users to be able to monitor their own transactions, as well as bank's need to justify its payment requests from cardholders, entitle the latter to maintain a detailed log of all transactions its credit card customers were involved in. A bank can thus build a profile of each cardholder even without the latter's consent. In this paper, we present a practical and accountable anonymous credit system based on ecash, with a privacy preserving mechanism for error correction and expense-reporting
Privacy-aware multi-context RFID infrastructure using public key cryptography
We propose a novel RFID infrastructure design, which foresees the usage of a single RFID tag within different contexts and for multiple purposes. We show that an infrastructure for multi-purpose RFID tags to be used in different contexts can be implemented in a privacy-preserving manner. We address security attacks such as impersonation, tracking, and replay. We also introduce spatio-temporal attacks as an important threat against privacy. We propose a methodology to thwart or alleviate these kinds of attacks. We develop our multi-context RFID infrastructure relying on usage of public key cryptography (PKC), which presents more scalable solutions in the sense that the backend servers can identify the tags 75 times faster than best symmetric cipher based systems when there are a million tags in the system. We demonstrate that the requirements for PKC are comparable to those for other cryptographic implementations based on symmetric ciphers proposed for RFID use
Election Verifiability for Helios under Weaker Trust Assumptions
Most electronic voting schemes aim at providing verifiability: voters should trust the result without having to rely on some authorities. Actually, even a prominent voting system like Helios cannot fully achieve verifiability since a dishonest bulletin board may add ballots. This problem is called ballot stuffing. In this paper we give a definition of verifiability in the computational model to account for a malicious bulletin board that may add ballots. Next, we provide a generic construction that transforms a voting scheme that is verifiable against an honest bulletin board and an honest registration authority (weak verifiability) into a verifiable voting scheme under the weaker trust assumption that the registration authority and the bulletin board are not simultaneously dishonest (strong verifiability). This construction simply adds a registration authority that sends private credentials to the voters, and publishes the corresponding public credentials. We further provide simple and natural criteria that imply weak verifiability. As an application of these criteria, we formally prove the latest variant of Helios by Bernhard, Pereira and Warinschi weakly verifiable. By applying our generic construction we obtain a Helios-like scheme that has ballot privacy and strong verifiability (and thus prevents ballot stuffing). The resulting voting scheme, Helios-C, retains the simplicity of Helios and has been implemented and tested
Authentication with Weaker Trust Assumptions for Voting Systems
Some voting systems are reliant on external authentication services.
Others use cryptography to implement their own. We combine
digital signatures and non-interactive proofs to derive a generic construction
for voting systems with their own authentication mechanisms, from systems
that rely on external authentication services. We prove that our
construction produces systems satisfying ballot secrecy and election
verifiability, assuming the underlying voting system does. Moreover,
we observe that works based on similar ideas provide neither ballot secrecy nor
election verifiability. Finally, we demonstrate applicability of
our results by applying our construction to the Helios voting system
KLEIN: A New Family of Lightweight Block Ciphers
Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
- …
