2,103 research outputs found
Emergent localized states at the interface of a twofold -symmetric lattice
We consider the role of non-triviality resulting from a non-Hermitian
Hamiltonian that conserves twofold PT-symmetry assembled by interconnections
between a PT-symmetric lattice and its time reversal partner. Twofold
PT-symmetry in the lattice produces additional surface exceptional points that
play the role of new critical points, along with the bulk exceptional point. We
show that there are two distinct regimes possessing symmetry-protected
localized states, of which localization lengths are robust against external
gain and loss. The states are demonstrated by numerical calculation of a
quasi-1D ladder lattice and a 2D bilayered square lattice.Comment: 10 pages, 7 figure
Iron and Nickel Line Diagnostics for the Galactic Center Diffuse Emission
We have observed the diffuse X-ray emission from the Galactic center (GC)
using the X-ray Imaging Spectrometer (XIS) on Suzaku. The high-energy
resolution and the low-background orbit provide excellent spectra of the GC
diffuse X-rays (GCDX). The XIS found many emission lines in the GCDX near the
energy of K-shell transitions of iron and nickel. The most pronounced features
are FeI K alpha at 6.4 keV and K-shell absorption edge at 7.1 keV, which are
from neutral and/or low ionization states of iron, and the K-shell lines at 6.7
keV and 6.9 keV from He-like (FeXXV K alpha) and hydrogenic (FeXXVI Ly alpha)
ions of iron. In addition, K alpha lines from neutral or low ionization nickel
(NiI K alpha) and He-like nickel (NiXXVII K alpha), and FeI K beta, FeXXV K
beta, FeXXVI Ly beta, FeXXV K gamma and FeXXVI Ly gamma are detected for the
first time. The line center energies and widths of FeXXV K alpha and FeXXVI Ly
alpha favor a collisional excitation (CE) plasma for the origin of the GCDX.
The electron temperature determined from the line flux ratio of FeXXV K alpha /
FeXXV K beta is similar to the ionization temperature determined from that of
FeXXV K alpha /FeXXVI Ly alpha. Thus it would appear that the GCDX plasma is
close to ionization equilibrium. The 6.7 keV flux and temperature distribution
to the galactic longitude is smooth and monotonic,in contrast to the integrated
point source flux distribution. These facts support the hypothesis that the
GCDX is truly diffuse emission rather than the integration of the outputs of a
large number of unresolved point sources. In addition, our results demonstrate
that the chemical composition of Fe in the interstellar gas near the GC is
constrained to be about 3.5 times solar.Comment: 11 pages, 19 figures. Accepted for publication in PASJ Suzaku Special
Issue (vol. 59 sp. 1
Inter-annual variation in CH4 efflux and the associated processes with reference to delta-13C-, delta-D-CH4 at the Lowland of Indigirka River in Northeastern Siberia
第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ
Recommended from our members
Analysis of 6,515 exomes reveals a recent origin of most human protein-coding variants
Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history1,2 and will help facilitate the development of new approaches for disease gene discovery3. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth4-6, notable for an excess of rare genetic variants, qualitatively suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European (n=4,298) and African (n=2,217) American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that ~73% of all protein-coding SNVs and ~86% of SNVs predicted to be deleterious arose in the past 5,000-10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs compared to other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, illustrate the profound effect recent human history has had on the burden of deleterious SNVs segregating in contemporary populations, and provides important practical information that can be used to prioritize variants in disease gene discovery
Quantum algebra in the mixed light pseudoscalar meson states
In this paper, we investigate the entanglement degrees of pseudoscalar meson
states via quantum algebra Y(su(3)). By making use of transition effect of
generators J of Y(su(3)), we construct various transition operators in terms of
J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The
entanglement degrees of both the initial state and final state are calculated
with the help of entropy theory. The diagrams of entanglement degrees are
presented. Our result shows that a state with desired entanglement degree can
be achieved by acting proper chosen transition operator on an initial state.
This sheds new light on the connect among quantum information, particle physics
and Yangian algebra.Comment: 9 pages, 3 figure
Quantum error correction beyond qubits
Quantum computation and communication rely on the ability to manipulate
quantum states robustly and with high fidelity. Thus, some form of error
correction is needed to protect fragile quantum superposition states from
corruption by so-called decoherence noise. Indeed, the discovery of quantum
error correction (QEC) turned the field of quantum information from an academic
curiosity into a developing technology. Here we present a continuous-variable
experimental implementation of a QEC code, based upon entanglement among 9
optical beams. In principle, this 9-wavepacket adaptation of Shor's original
9-qubit scheme allows for full quantum error correction against an arbitrary
single-beam (single-party) error.Comment: realization of a Gaussian error correction protocol suitable for
non-Gaussian error correctio
Interplay between spin-orbit coupling and van Hove singularity in the Hund's metallicity of SrRuO
We investigate the dynamical properties of SrRuO at zero and very low
temperature using density functional theory plus dynamical mean-field theory
with an exact diagonalization solver. By considering rotationally invariant
local interaction, we examine how Hund's coupling and spin-orbit coupling
affect the correlated nature of the system. In the absence of Hund's coupling,
the system shows a Fermi liquid behavior over the entire range of temperatures
we consider. We confirm that the Fermi liquid persists at zero temperature even
with nonzero Hund's coupling; however, at sufficient temperatures Hund's
coupling significantly reduces the Fermi liquid regime and the system evolves
into a typical Hund's metal. At the bare electronic occupancy of SrRuO
(), a stronger Hund's metallicity accompanies a larger long-time
correlator. Remarkably, electron doping further destabilizes the Fermi liquid
even though the long-time correlator and magnetic fluctuations decrease upon
doping. This suppression of the Fermi liquid is driven by the van Hove
singularity above the Fermi level in SrRuO, combined with an enhanced
Van Vleck susceptibility by spin-orbit coupling. Such findings point to the
important role that electronic structure plays in the behavior of Hund's
metals, in addition to magnetic fluctuations.Comment: 7 pages, 4 figure
Prokaryotic communities in subglacial outflows in the Alaska Range
The 14th Symposium on Polar Science/Interdisciplinary sessions [IA] Arctic Research, Thu. 16 Nov. / Entrance Hall (1st floor), National Institute of Polar Researchconference objec
- …
