25,791 research outputs found

    Ultrafast coherent energy transfer with high efficiency based on plasmonic nanostructures

    Full text link
    The theory of energy transfer dynamics of a pair of donor and acceptor molecules located in the plasmonic hot spots is developed by means of the master equation approach and the electromagnetic Green's tensor technique. A nonlocal effect has been considered by using a hydrodynamic model. The coherent interaction between the two molecules in plasmonic nanostructures is investigated under some strong coupling conditions. It is shown that the energy transfer efficiency of a pair of molecules can be improved largely and the transfer time decreases to dozens of femtoseconds when the contribution of quantum coherence is considered. The physical origin for such a phenomenon has also been analyzed. This ultrafast and high-efficiency energy transfer mechanism could be beneficial for artificial light-harvesting devices
    corecore