141,411 research outputs found

    Optimizing I/O for Big Array Analytics

    Full text link
    Big array analytics is becoming indispensable in answering important scientific and business questions. Most analysis tasks consist of multiple steps, each making one or multiple passes over the arrays to be analyzed and generating intermediate results. In the big data setting, I/O optimization is a key to efficient analytics. In this paper, we develop a framework and techniques for capturing a broad range of analysis tasks expressible in nested-loop forms, representing them in a declarative way, and optimizing their I/O by identifying sharing opportunities. Experiment results show that our optimizer is capable of finding execution plans that exploit nontrivial I/O sharing opportunities with significant savings.Comment: VLDB201

    Bayesian Matrix Completion via Adaptive Relaxed Spectral Regularization

    Full text link
    Bayesian matrix completion has been studied based on a low-rank matrix factorization formulation with promising results. However, little work has been done on Bayesian matrix completion based on the more direct spectral regularization formulation. We fill this gap by presenting a novel Bayesian matrix completion method based on spectral regularization. In order to circumvent the difficulties of dealing with the orthonormality constraints of singular vectors, we derive a new equivalent form with relaxed constraints, which then leads us to design an adaptive version of spectral regularization feasible for Bayesian inference. Our Bayesian method requires no parameter tuning and can infer the number of latent factors automatically. Experiments on synthetic and real datasets demonstrate encouraging results on rank recovery and collaborative filtering, with notably good results for very sparse matrices.Comment: Accepted to AAAI 201

    DeepCity: A Feature Learning Framework for Mining Location Check-ins

    Get PDF
    Online social networks being extended to geographical space has resulted in large amount of user check-in data. Understanding check-ins can help to build appealing applications, such as location recommendation. In this paper, we propose DeepCity, a feature learning framework based on deep learning, to profile users and locations, with respect to user demographic and location category prediction. Both of the predictions are essential for social network companies to increase user engagement. The key contribution of DeepCity is the proposal of task-specific random walk which uses the location and user properties to guide the feature learning to be specific to each prediction task. Experiments conducted on 42M check-ins in three cities collected from Instagram have shown that DeepCity achieves a superior performance and outperforms other baseline models significantly
    corecore