70,584 research outputs found

    Energy Loss in Nuclear Drell-Yan Process

    Get PDF
    By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.Comment: 10 pages, LaTeX, 1 ps figures, To appear in Eur. Phys. J.

    Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering

    Full text link
    The generation of quantum entanglement of macroscopic or mesoscopic bodies in mechanical motion is generally bounded by the thermal fluctuation exerted by their environments. Here we propose a scheme to establish stationary entanglement between two mechanically oscillating mirrors of a cavity. It is revealed that, by applying a broadband squeezed laser acting as a squeezed-vacuum reservoir to the cavity, a stable entanglement between the mechanical mirrors can be generated. Using the adiabatic elimination and master equation methods, we analytically find that the generated entanglement is essentially determined by the squeezing of the relative momentum of the mechanical mirrors, which is transferred from the squeezed reservoir through the cavity. Numerical verification indicates that our scheme is within the present experimental state of the art of optomechanics.Comment: 9 pages, 6 figure

    Thrust distribution in Higgs decays at the next-to-leading order and beyond

    Full text link
    We present predictions for the thrust distribution in hadronic decays of the Higgs boson at the next-to-leading order and the approximate next-to-next-to-leading order. The approximate NNLO corrections are derived from a factorization formula in the soft/collinear phase-space regions. We find large corrections, especially for the gluon channel. The scale variations at the lowest orders tend to underestimate the genuine higher order contributions. The results of this paper is therefore necessary to control the perturbative uncertainties of the theoretical predictions. We also discuss on possible improvements to our results, such as a soft-gluon resummation for the 2-jets limit, and an exact next-to-next-to-leading order calculation for the multi-jets region
    corecore