22,480 research outputs found
Inducing Effect on the Percolation Transition in Complex Networks
Percolation theory concerns the emergence of connected clusters that
percolate through a networked system. Previous studies ignored the effect that
a node outside the percolating cluster may actively induce its inside
neighbours to exit the percolating cluster. Here we study this inducing effect
on the classical site percolation and K-core percolation, showing that the
inducing effect always causes a discontinuous percolation transition. We
precisely predict the percolation threshold and core size for uncorrelated
random networks with arbitrary degree distributions. For low-dimensional
lattices the percolation threshold fluctuates considerably over realizations,
yet we can still predict the core size once the percolation occurs. The core
sizes of real-world networks can also be well predicted using degree
distribution as the only input. Our work therefore provides a theoretical
framework for quantitatively understanding discontinuous breakdown phenomena in
various complex systems.Comment: Main text and appendices. Title has been change
Generating nonclassical photon-states via longitudinal couplings between superconducting qubits and microwave fields
Besides the conventional transverse couplings between superconducting qubits
(SQs) and electromagnetic fields, there are additional longitudinal couplings
when the inversion symmetry of the potential energies of the SQs is broken. We
study nonclassical-state generation in a SQ which is driven by a classical
field and coupled to a single-mode microwave field. We find that the classical
field can induce transitions between two energy levels of the SQs, which either
generate or annihilate, in a controllable way, different photon numbers of the
cavity field. The effective Hamiltonians of these classical-field-assisted
multiphoton processes of the single-mode cavity field are very similar to those
for cold ions, confined to a coaxial RF-ion trap and driven by a classical
field. We show that arbitrary superpositions of Fock states can be more
efficiently generated using these controllable multiphoton transitions, in
contrast to the single-photon resonant transition when there is only a SQ-field
transverse coupling. The experimental feasibility for different SQs is also
discussed.Comment: 15 pages, 8 figure
Engineering entangled microwave photon states via multiphoton interactions between two cavity fields and a superconducting qubit
It has been shown that there are not only transverse but also longitudinal
couplings between microwave fields and a superconducting qubit with broken
inversion symmetry of the potential energy. Using multiphoton processes induced
by longitudinal coupling fields and frequency matching conditions, we design a
universal algorithm to produce arbitrary superpositions of two-mode photon
states of microwave fields in two separated transmission line resonators, which
are coupled to a superconducting qubit. Based on our algorithm, we analyze the
generation of evenly-populated states and NOON states. Compared to other
proposals with only single-photon process, we provide an efficient way to
produce entangled microwave states when the interactions between
superconducting qubits and microwave fields are in the ultrastrong regime
Multipartite entanglement purification with quantum nondemolition detectors
We present a scheme for multipartite entanglement purification of quantum
systems in a Greenberger-Horne-Zeilinger state with quantum nondemolition
detectors (QNDs). This scheme does not require the controlled-not gates which
cannot be implemented perfectly with linear optical elements at present, but
QNDs based on cross-Kerr nonlinearities. It works with two steps, i.e., the
bit-flipping error correction and the phase-flipping error correction. These
two steps can be iterated perfectly with parity checks and simple single-photon
measurements. This scheme does not require the parties to possess sophisticated
single photon detectors. These features maybe make this scheme more efficient
and feasible than others in practical applications.Comment: 8 pages, 5 figure
- …
