22,480 research outputs found

    Inducing Effect on the Percolation Transition in Complex Networks

    Full text link
    Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolating cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.Comment: Main text and appendices. Title has been change

    Generating nonclassical photon-states via longitudinal couplings between superconducting qubits and microwave fields

    Full text link
    Besides the conventional transverse couplings between superconducting qubits (SQs) and electromagnetic fields, there are additional longitudinal couplings when the inversion symmetry of the potential energies of the SQs is broken. We study nonclassical-state generation in a SQ which is driven by a classical field and coupled to a single-mode microwave field. We find that the classical field can induce transitions between two energy levels of the SQs, which either generate or annihilate, in a controllable way, different photon numbers of the cavity field. The effective Hamiltonians of these classical-field-assisted multiphoton processes of the single-mode cavity field are very similar to those for cold ions, confined to a coaxial RF-ion trap and driven by a classical field. We show that arbitrary superpositions of Fock states can be more efficiently generated using these controllable multiphoton transitions, in contrast to the single-photon resonant transition when there is only a SQ-field transverse coupling. The experimental feasibility for different SQs is also discussed.Comment: 15 pages, 8 figure

    Engineering entangled microwave photon states via multiphoton interactions between two cavity fields and a superconducting qubit

    Full text link
    It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave states when the interactions between superconducting qubits and microwave fields are in the ultrastrong regime

    Multipartite entanglement purification with quantum nondemolition detectors

    Full text link
    We present a scheme for multipartite entanglement purification of quantum systems in a Greenberger-Horne-Zeilinger state with quantum nondemolition detectors (QNDs). This scheme does not require the controlled-not gates which cannot be implemented perfectly with linear optical elements at present, but QNDs based on cross-Kerr nonlinearities. It works with two steps, i.e., the bit-flipping error correction and the phase-flipping error correction. These two steps can be iterated perfectly with parity checks and simple single-photon measurements. This scheme does not require the parties to possess sophisticated single photon detectors. These features maybe make this scheme more efficient and feasible than others in practical applications.Comment: 8 pages, 5 figure
    corecore