2,857 research outputs found

    AGN Absorption Linked to Host Galaxies

    Full text link
    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3<z<1, and using AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection. These proceedings review selected results by Juneau et al. (2013, ApJ 764, 176), and their implications. The original work involved several members from the GOODS and AEGIS teams.Comment: Proceedings to be published for the IAU Symposium 304: Multiwavelength AGN Surveys and Studies. 4 pages. 2 figures. v2: Fixed a referenc

    Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    Full text link
    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [OIII]/Hβ\beta versus [NII]/Hα\alpha nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z23z\simeq2-3 galaxies, but higher than those in normal SDSS galaxies by \simeq0.6~dex and \simeq0.9~dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows 0.2-0.2~dex offset from that in SDSS star-forming galaxies at the low mass end, which is consistent with the MZR of the z23z\sim2-3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron densities in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameter and electron density to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.Comment: 13 pages, 11 figures, accepted by Ap

    Yakemtchouk, Romain, L’Iran face aux puissances, Paris, L’Harmattan, 2007, 401 p.

    Get PDF
    corecore