270 research outputs found

    Altered fecal microbial and metabolic profile reveals potential mechanisms underlying iron deficiency anemia in pregnant women in China

    Get PDF
    The gut microbiome and its metabolism may provide crucial insight into the cause of iron deficiency anemia (IDA) in pregnant women. This study aimed to investigate the effect of the gut microbiome and its related metabolites on pregnant women with iron deficiency (ID) and IDA. Maternal cubital venous blood and stool samples were collected from healthy control pregnant women (HC, non-anemic, n=10), pregnant women with ID non-anemia (ID, n=10), and IDA (n=10). All groups were subjected to fecal metagenomics and metabolomics. The composition and function of the gut microbiome were then compared in pregnant women with ID and IDA with HC after excluding the possibility of inflammation and insufficient iron absorption capacity. Whole-genome shotgun libraries were prepared by quantifying metagenomic DNA samples with Quant-iT PicoGreen dsDNA Assay. The levels of 41 microbial species, including 21 Streptococci and ten metabolites (catechol), which could serve as siderophores, were increased. In contrast, 3 Bacteroides and six metabolites were decreased in pregnant women with IDA (p<0.05). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the bio-pathways, including biosynthesis of siderophore group non-ribosomal peptides (p<0.01), ABC transporters (p<0.05) and membrane transport of the gut microbiota (p<0.01) in IDA patients were expressed differently compared with HC. Correlation analysis also indicates that these increased bacteria formed strong co-occurring relationships with metabolites in the occurrence and development of IDA in pregnant women. The current study identified that streptococci and catechol (fecal metabolite) were significantly increased in pregnant women with IDA. Therefore, adjusting the intestinal homeostasis using long-term living and eating habits on oral Streptococcus in pregnant women with IDA before iron supplementation may be more conducive to iron supplementation, thus providing novel therapies for IDA

    Enriched environment improves working memory impairment of mice with traumatic brain injury by enhancing histone acetylation in the prefrontal cortex

    Get PDF
    Working memory impairment is a common cognitive dysfunction after traumatic brain injury (TBI), which severely affects the quality of life of patients. Acetylcholine is a neurotransmitter which is closely related to cognitive functions. In addition, epigenetic modifications are also related to cognitive functions. A neurorehabilitation strategy, enriched environment (EE) intervention, has been widely used to improve cognitive impairment. However, studies of the mechanism of EE on cholinergic system and epigenetic modifications in mouse with TBI have not been reported yet. In this paper, a mouse model with traumatic frontal lobe injury was established, and the mechanism on EE for the mice with TBI was explored. It was found that EE could improve Y-maze performance of mice with TBI, the function of cholinergic system, and the imbalance of acetylation homeostasis in the prefrontal cortex of contralateral side of TBI. In addition, EE also could increase the level of CREB binding protein and histones H3 acetylation at ChAT gene promoter region in the prefrontal cortex of contralateral side of TBI. These indicate that EE has an important effect on the improvement of working memory impairment and the underlying mechanism may involve in histones H3 acetylation at ChAT gene promoter regions in the prefrontal cortex

    Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Get PDF
    BACKGROUND: Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB) is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK 1/2), PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. RESULTS: We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively) significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. CONCLUSION: These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli

    Automatic velocity picking with restricted weighted k-means clustering using prior information

    Get PDF
    Automatic picking of seismic velocity can be performed using k-means clustering. In simple k-means clustering, the number of clusters needs to be predetermined, while the picking result is affected by the initial value of each cluster center. In this study, we present an unsupervised weighted k-means clustering velocity-picking method that picks the centers of the energy clusters instead of the geometric centers of the clusters. This method works on the semblance velocity spectrum and requires an initial velocity function and three user-defined thresholds to limit the search area. The number of cluster centers and their initial times are obtained according to a rectangular signal resulting from the three thresholds, while the initial velocities of the cluster centers can be subsequently obtained using their initial times and the initial velocity function. Inaccurate selection of thresholds may merge two clusters wrongly, in which case only a stronger event is selected. In the weighted k-means clustering algorithm, weights are calculated by using the amplitudes of the velocity points. Meanwhile, points far from the center are gradually removed to ensure that each cluster center coincides with the respective energy cluster center. We also propose a method for ignoring non-primary velocities, such as multiples, by removing points that create sudden changes in the slope of the reference velocity beyond a user-defined limit. The processing of the model and real data show that the proposed seismic velocity-picking method has high efficiency and picking accuracy

    Determination of Auramine O and Curcumin in Durian by QuEChERS-high Performance Liquid Chromatography-tandem Mass Spectrometry

    Get PDF
    A QuEChERS-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of auramine O, curcumin, deoxymethylcurcumin and dideoxymethylcurcumin in durian. The samples were extracted by 0.1% formic acid acetonitrile, purified by 100 mg C18 and 100 mg anhydrous magnesium sulfate. Using 0.1% formic acid aqueous solution and 0.1% formic acid acetonitrile as mobile phase, the samples were separated by Poroshell 120 EC-C18 column, monitored by multiple reaction monitoring in a positive ion mode, and quantitatively analyzed by an external standard method. The results showed that four compounds had good linear relationships in the mass concentration range, and the determination coefficient R2 was > 0.999. The limits of detection and quantitation of auramine O were 0.4 μg/kg and 1.0 μg/kg, respectively. The limits of detection and quantification of curcumin, deoxymethylcurcumin and dideoxymethylcurcumin were 2.0 μg/kg and 5.0 μg/kg, respectively. The average recovery rates were 88.3%-109.3% and the relative standard deviations were 0.59%-8.93% at low, middle and high levels. The developed method is rapid, convenient, sensitive and accurate, and can be used for the determination of auramine O, curcumin, deoxymethylcurcumin and dideoxymethylcurcumin in durian

    Design and evaluation of a rodent-specific focal transcranial magnetic stimulation coil with the custom shielding application in rats

    Get PDF
    Repetitive TMS has been used as an alternative treatment for various neurological disorders. However, most TMS mechanism studies in rodents have been based on the whole brain stimulation, the lack of rodent-specific focal TMS coils restricts the proper translation of human TMS protocols to animal models. In this study, we designed a new shielding device, which was made of high magnetic permeability material, to enhance the spatial focus of animal-use TMS coils. With the finite element method, we analyzed the electromagnetic field of the coil with and without the shielding device. Furthermore, to assess the shielding effect in rodents, we compared the c-fos expression, the ALFF and ReHo values in different groups following a 15 min 5 Hz rTMS paradigm. We found that a smaller focality with an identical core stimulation intensity was achieved in the shielding device. The 1 T magnetic field was reduced from 19.1 mm to 13 mm in diameter, and 7.5 to 5.6 mm in depth. However, the core magnetic field over 1.5 T was almost the same. Meanwhile, the area of electric field was reduced from 4.68 cm2 to 4.19 cm2, and 3.8 mm to 2.6 mm in depth. Similar to this biomimetic data, the c-fos expression, the ALFF and ReHo values showed more limited cortex activation with the use of the shielding device. However, compared to the rTMS group without the shielding application, more subcortical regions, like the striatum (CPu), the hippocampus, the thalamus, and the hypothalamus were also activated in the shielding group. This indicated that more deep stimulation may be achieved by the shielding device. Generally, compared with the commercial rodents’ TMS coil (15 mm in diameter), TMS coils with the shielding device achieved a better focality (~6 mm in diameter) by reducing at least 30% of the magnetic and electric field. This shielding device may provide a useful tool for further TMS studies in rodents, especially for more specific brain area stimulation
    corecore