1,043 research outputs found
Cug2 is essential for normal mitotic control and CNS development in zebrafish.
Background:
We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2), which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models.
Results:
To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS). Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate.
Conclusions:
Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders
FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development
Objective: It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown
Nonlinear Localization in Metamaterials
Metamaterials, i.e., artificially structured ("synthetic") media comprising
weakly coupled discrete elements, exhibit extraordinary properties and they
hold a great promise for novel applications including super-resolution imaging,
cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new
degree of freedom for metamaterial design that allows for tuneability and
multistability, properties that may offer altogether new functionalities and
electromagnetic characteristics. The combination of discreteness and
nonlinearity may lead to intrinsic localization of the type of discrete
breather in metallic, SQUID-based, and symmetric metamaterials. We
review recent results demonstrating the generic appearance of breather
excitations in these systems resulting from power-balance between intrinsic
losses and input power, either by proper initialization or by purely dynamical
procedures. Breather properties peculiar to each particular system are
identified and discussed. Recent progress in the fabrication of low-loss,
active and superconducting metamaterials, makes the experimental observation of
breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Rule-based modelling provides an extendable framework for comparing candidate mechanisms underpinning clathrin polymerisation
Abstract Polymerisation of clathrin is a key process that underlies clathrin-mediated endocytosis. Clathrin-coated vesicles are responsible for cell internalization of external substances required for normal homeostasis and life –sustaining activity. There are several hypotheses describing formation of closed clathrin structures. According to one of the proposed mechanisms cage formation may start from a flat lattice buildup on the cellular membrane, which is later transformed into a curved structure. Creation of the curved surface requires rearrangement of the lattice, induced by additional molecular mechanisms. Different potential mechanisms require a modeling framework that can be easily modified to compare between them. We created an extendable rule-based model that describes polymerisation of clathrin molecules and various scenarios of cage formation. Using Global Sensitivity Analysis (GSA) we obtained parameter sets describing clathrin pentagon closure and the emergence/production and closure of large-size clathrin cages/vesicles. We were able to demonstrate that the model can reproduce budding of the clathrin cage from an initial flat array
GADD34 keeps the mTOR pathway inactivated in endoplasmic reticulum stress related autophagy
The balance of protein synthesis and proteolysis (i.e. proteostasis) is maintained by a complex regulatory network in which mTOR (mechanistic target of rapamycin serine/threonine kinase) pathway and unfolded protein response are prominent positive and negative actors. The interplay between the two systems has been revealed; however the mechanistic details of this crosstalk are largely unknown. The aim of the present study was to investigate the elements of crosstalk during endoplasmic reticulum stress and to verify the key role of GADD34 in the connection with the mTOR pathway. Here, we demonstrate that a transient activation of autophagy is present in endoplasmic reticulum stress provoked by thapsigargin or tunicamycin, which is turned into apoptotic cell death. The transient phase can be characterized by the elevation of the autophagic marker LC3II/I, by mTOR inactivation, AMP-activated protein kinase activation and increased GADD34 level. The switch from autophagy to apoptosis is accompanied with the appearance of apoptotic markers, mTOR reactivation, AMP-activated protein kinase inactivation and a decrease in GADD34. Inhibition of autophagy by 3-methyladenine shortens the transient phase, while inhibition of mTOR by rapamycin or resveratrol prolongs it. Inhibition of GADD34 by guanabenz or transfection of the cells with siGADD34 results in down-regulation of autophagy-dependent survival and a quick activation of mTOR, followed by apoptotic cell death. The negative effect of GADD34 inhibition is diminished when guanabenz or siGADD34 treatment is combined with rapamycin or resveratrol addition. These data confirm that GADD34 constitutes a mechanistic link between endoplasmic reticulum stress and mTOR inactivation, therefore promotes cell survival during endoplasmic reticulum stress. © 2016 Holczer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Emotion-Related Visual Mismatch Responses in Schizophrenia: Impairments and Correlations with Emotion Recognition.
BACKGROUND AND OBJECTIVES:Mismatch negativity (MMN) is an event-related potential (ERP) measure of preattentional sensory processing. While deficits in the auditory MMN are robust electrophysiological findings in schizophrenia, little is known about visual mismatch response and its association with social cognitive functions such as emotion recognition in schizophrenia. Our aim was to study the potential deficit in the visual mismatch response to unexpected facial emotions in schizophrenia and its association with emotion recognition impairments, and to localize the sources of the mismatch signals. EXPERIMENTAL DESIGN:The sample comprised 24 patients with schizophrenia and 24 healthy control subjects. Controls were matched individually to patients by gender, age, and education. ERPs were recorded using a high-density 128-channel BioSemi amplifier. Mismatch responses to happy and fearful faces were determined in 2 time windows over six regions of interest (ROIs). Emotion recognition performance and its association with the mismatch response were also investigated. PRINCIPAL OBSERVATIONS:Mismatch signals to both emotional conditions were significantly attenuated in patients compared to controls in central and temporal ROIs. Controls recognized emotions significantly better than patients. The association between overall emotion recognition performance and mismatch response to the happy condition was significant in the 250-360 ms time window in the central ROI. The estimated sources of the mismatch responses for both emotional conditions were localized in frontal regions, where patients showed significantly lower activity. CONCLUSIONS:Impaired generation of mismatch signals indicate insufficient automatic processing of emotions in patients with schizophrenia, which correlates strongly with decreased emotion recognition
Quantitative-spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal)
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments
(Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to
the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental
contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was
undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to
the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution
degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu,
Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to
erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis
soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical
elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are
responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media
Measurement of the top quark mass using the matrix element technique in dilepton final states
We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84 GeV
- …
