909 research outputs found

    Resilient urban governance: Adaptation and innovation in the face of the Coronavirus pandemic

    Get PDF
    The pervasive, unpredictable, and unmanageable outcomes gener- ated by the coronavirus pandemic portray many features of what have been defined as “super-wicked ”problems ( Levin et al., 2012 ). In this regard, defeating COVID-19 is not the only issue. The main problem is, rather, how to make our societies more resilient also to possible similar kinds of viruses that might affect our lives in the near future, provided the structure of the socio-economic and ecological systems where we live. As noted by Levin et al. (2012 , p. 124), ‘super-wicked’ problems “comprise four key features: time is running out; those who cause the problem also seek to provide a solution; the central authority needed to address them is weak or non-existent; and irrational discounting occurs that pushes responses into the future. Together these features create a tragedy because our governance institutions, and the policies they gen- erate (or fail to generate), largely respond to short-term time horizons even when the catastrophic implications of doing so are far greater than any real or perceived benefits of inaction”

    Rnd3/RhoE Modulates HIF1α/VEGF Signaling by Stabilizing HIF1α and Regulates Responsive Cardiac Angiogenesis

    Get PDF
    The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure

    BaFe12O19 single-particle-chain nanofibers : preparation, characterization, formation principle, and magnetization reversal mechanism

    Get PDF
    BaFe12O19 single-particle-chain nanofibers have been successfully prepared by an electrospinning method and calcination process, and their morphology, chemistry, and crystal structure have been characterized at the nanoscale. It is found that individual BaFe12O19 nanofibers consist of single nanoparticles which are found to stack along the nanofiber axis. The chemical analysis shows that the atomic ratio of Ba/Fe is 1:12, suggesting a BaFe12O19 composition. The crystal structure of the BaFe12O19 single-particle-chain nanofibers is proved to be M-type hexagonal. The single crystallites on each BaFe12O19 single-particlechain nanofibers have random orientations. A formation mechanism is proposed based on thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) at six temperatures, 250, 400, 500, 600, 650, and 800 �C. The magnetic measurement of the BaFe12O19 single-particle-chain nanofibers reveals that the coercivity reaches a maximum of 5943 Oe and the saturated magnetization is 71.5 emu/g at room temperature. Theoretical analysis at the micromagnetism level is adapted to describe the magnetic behavior of the BaFe12O19 single-particle-chain nanofibers

    Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interest in lycopene metabolism and regulation is growing rapidly because accumulative studies have suggested an important role for lycopene in human health promotion. However, little is known about the molecular processes regulating lycopene accumulation in fruits other than tomato so far.</p> <p>Results</p> <p>On a spontaneous sweet orange bud mutant with abnormal lycopene accumulation in fruits and its wild type, comparative transcripts profiling was performed using Massively Parallel Signature Sequencing (MPSS). A total of 6,877,027 and 6,275,309 reliable signatures were obtained for the wild type (WT) and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed gene in MT is 18,106, larger than that in WT 17,670, suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts abundance between MT and WT revealed that 3,738 genes show more than two fold expression difference, and 582 genes are up- or down-regulated at 0.05% significance level by more than three fold difference. Functional assignments of the differentially expressed genes indicated that 26 reliable metabolic pathways are altered in the mutant; the most noticeable ones are carotenoid biosynthesis, photosynthesis, and citrate cycle. These data suggest that enhanced photosynthesis and partial impairment of lycopene downstream flux are critical for the formation of lycopene accumulation trait in the mutant.</p> <p>Conclusion</p> <p>This study provided a global picture of the gene expression changes in a sweet orange red-flesh mutant as compared to the wild type. Interpretation of the differentially expressed genes revealed new insight into the molecular processes regulating lycopene accumulation in the sweet orange red-flesh mutant.</p

    A case report and literature review of livedoid vasculopathy in children

    Get PDF
    BackgroundLivedoid vasculopathy (LV) is a rare, non-inflammatory, intradermal vascular obstructive skin disorder characterized by purpuric papules and plaques with capillary dilation. These lesions typically progress to crusted ulcers and ultimately result in fixed, white, atrophic stellate scars. The condition is marked by painful ulcers that heal slowly and have a tendency to recur.Case presentationWe report a case of a pediatric patient presenting with recurrent rashes and pain in both lower extremities. Physical examination revealed purpuric plaques with ulceration, scarring, and white atrophic healing features. Histopathological examination demonstrated intradermal thrombosis, vessel wall necrosis, and surrounding inflammatory cell infiltration with erythrocyte extravasation. Periodic acid-Schiff (PAS) staining was positive. The clinical and pathological findings were consistent with a diagnosis of LV. The patient was treated with oral rivaroxaban.ConclusionThis case highlights the critical importance of early recognition and intervention in the management of LV. Clinicians should consider LV in the differential diagnosis when encountering patients with painful purpuric rashes. Improvement in pain following treatment with anticoagulants, such as rivaroxaban, may indirectly support the diagnosis. A skin biopsy is essential for definitive diagnosis

    Verrucisidinol and Verrucosidinol Acetate, Two Pyrone-Type Polyketides Isolated from a Marine Derived Fungus, Penicillium aurantiogriseum

    Get PDF
    The new secondary metabolites verrucosidinol (1) and its derivative verrucosidinol acetate (2), together with a potent neurotoxin verrucosidin (3), a congener norverrucosidin (4) and a mixture of two known phytotoxic metabolites terrestric acids (5 and 6), were isolated from the marine derived fungus Penicillium aurantiogriseum. Verrucosidinol has a ring-opened ethylene oxide moiety in the polyene α-pyrone skeleton, and verrucosidinol acetate is its acetate derivative. The chemical structures were determined by comparing with literature data and a combination of spectroscopic techniques, including high resolution mass spectrum and two-dimentional nuclear magnetic resonance spectroscopic analysis

    Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives

    Get PDF
    Invasive plants can change soil properties resulting in improved growth. Although invaders are known to alter soil chemistry, it remains unclear if chemicals secreted by roots facilitate invasive plant–soil mutualisms. With up to 19 confamilial pairs of invasive and native plants, and most of which were congeners, we explored the root exudate-induced changes in plant–arbuscular mycorrhizal (AM) fungal mutualisms. We found that, relative to natives, invaders had greater AM colonization, greater biomass and their root exudates contained higher concentrations of two common chemical signals – quercetin and strigolactones – which are known to stimulate AM fungal growth and root colonization. An exudate exchange experiment showed that root exudates from invaders increased AM colonization more than exudates from natives. However, application of activated carbon led to greater reduction in AM colonization and plant biomass for invaders than natives, suggesting stronger effects of chemical signals in root exudates from invaders. We show that nonnative plants promote interactions with soil mutualists via enhancing root exudate chemicals, which could have important implications for invasion success

    Case report: Interstitial implantation radiotherapy combined with immunotherapy and GM-CSF in oligometastatic platinum-resistant ovarian cancer

    Get PDF
    BackgroundTreatment for platinum-resistant ovarian cancer is challenging. Currently, platinum-resistant ovarian cancer is typically treated with non-platinum single-agent chemotherapy ± bevacizumab, but the prognosis is often extremely poor. In the treatment of platinum-resistant ovarian cancer patients, reports of triple therapy with interstitial implantation radiotherapy combined with immunotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) (PRaG for short) are relatively rare.Case descriptionHere, we report a patient with oligometastatic platinum-resistant ovarian cancer. The patient achieved partial response (PR) of the lesion and sustained benefit for more than six months after receiving interstitial implantation radiotherapy combined with immunotherapy along with GM-CSF.ConclusionThis triple therapy may provide additional options for these patients
    corecore