338 research outputs found
Abiotic processes are insufficient for fertile island development: A ten‐year artificial shrub experiment in a desert grassland
The relative importance of biotic and abiotic processes in the development of “fertile islands” in dryland systems has rarely been investigated. Here we approached this question by using artificial shrubs, which exclude plant litter production and soil nutrient uptake, but retain the functions of trapping windblown material, funneling of stemflow, and differential rain splash. We conducted a vegetation manipulation study more than a decade ago in the desert grassland of southern New Mexico and subsequently revisited the site in 2012 and 2015. The results show that no notable soil mounds were observed under the artificial shrubs; however, soil texture under the artificial shrubs has gradually changed to resemble the patterns of soil particle-size distribution under natural shrubs. Our results highlight that with the exclusion of direct biotic additions, soils captured by shrub canopies are not necessarily fertile and thus do not themselves contribute to the development of fertile islands
CD-1 mice Show Individual Differences in Nicotine Preference in a Modified Two-Bottle Oral Self-Administration Model
Although both animal and human studies reveal significant contributions of genetics to smoking addiction, many human studies were underpowered or biased by potential confounding variables, and animal genetic studies are challenged by limited genetic variations and lack of convincing phenotypes. To address these concerns, we used non-sibling outbred CD-1 mice to evaluate individual differences in nicotine preference with a modified two-bottle oral self-administration model. Animals were first given free access to two bottles, one filled with nicotine dissolved in 2% saccharin and the other with saccharin only. Under this regular two-bottle choice condition, the majority of animals avoided the nicotine solution with limited individual differences. However, when we modified the model by introducing 4 days of exposure to 5% saccharin in the drinking water, the animals significantly increased nicotine consumption in the two-bottle choice test, with about 30% animals showing a nicotine preference. Nicotine preference after 5% saccharin treatment remained elevated throughout the 28 days of the experiment. Further, we found there existed striking individual differences in nicotine consumption after exposure to 5% saccharin, with a range of 0–100% of total liquid consumption. The enhanced individual differences and the ratio of nicotine consumption were observed at different concentrations of nicotine (10–80 μg/ml) and in both adolescents and adults. Further examination on the induction mechanism showed that the long-lasting nicotine preference was not correlated with nicotine consumption before the induction, 5% saccharin consumption, or weight gain during the induction. Although liquid consumption during the 4 days of 5% saccharin exposure was decreased by about 30%, comparable liquid restriction alone for 4 days did not induce nicotine preference. Together, this study showed a strong and stable nicotine preference in CD-1 mice, which was induced by a short-term high concentration of saccharin in the drinking water. Considering the nature and heterogeneity of CD-1 mice, the striking individual differences imply that genetics plays an important role in nicotine preference observed in these animals
SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning
In contrastive learning, the choice of ``view'' controls the information that
the representation captures and influences the performance of the model.
However, leading graph contrastive learning methods generally produce views via
random corruption or learning, which could lead to the loss of essential
information and alteration of semantic information. An anchor view that
maintains the essential information of input graphs for contrastive learning
has been hardly investigated. In this paper, based on the theory of graph
information bottleneck, we deduce the definition of this anchor view; put
differently, \textit{the anchor view with essential information of input graph
is supposed to have the minimal structural uncertainty}. Furthermore, guided by
structural entropy, we implement the anchor view, termed \textbf{SEGA}, for
graph contrastive learning. We extensively validate the proposed anchor view on
various benchmarks regarding graph classification under unsupervised,
semi-supervised, and transfer learning and achieve significant performance
boosts compared to the state-of-the-art methods.Comment: ICML'2
Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models
Wind erosion is a significant environmental problem that removes soil resources from sensitive ecosystems and contributes to air pollution. In regions of shallow groundwater, friable (puffy) soils are maintained through capillary action, surface evaporation of solute-rich soil moisture, and protection from mobilization by groundwater-dependent grasses and shrubs. When a reduction in vegetation cover occurs through any disturbance process, there is potential for aeolian transport and dust emission. We find that as mean gap size between vegetation elements scaled by vegetation height increases, total horizontal aeolian sediment flux increases and explains 58% of the variation in total horizontal aeolian sediment flux. We also test a probabilistic model of wind erosion based on gap size between vegetation elements scaled by vegetation height (the Okin model), which predicts measured total horizontal aeolian sediment flux more closely than another commonly used model based on the average plant area observed in profile (Raupach model). The threshold shear velocity of bare soil appears to increase as gap size between vegetation elements scaled by vegetation height increases, reflecting either surface armoring or reduced interaction between the groundwater capillary zone and surface sediments. This work advances understanding of the importance of measuring gap size between vegetation elements scaled by vegetation height for empirically estimating Q and for structuring process-based models of desert wind erosion in groundwater-dependent vegetation
A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency
Magneto-elasto-electric (ME) coupling heterostructures, consisting of piezoelectric layers bonded to magnetostrictive ones, provide for a new class of electromagnetic emitter materials on which a portable (area ~ 16 cm 2 ) very low frequency (VLF) transmitter technology could be developed. The proposed ME transmitter functions as follows: (a) a piezoelectric layer is first driven by alternating current AC electric voltage at its electromechanical resonance (EMR) frequency, (b) subsequently, this EMR excites the magnetostrictive layers, giving rise to magnetization change, (c) in turn, the magnetization oscillations result in oscillating magnetic fields. By Maxwell’s equations, a corresponding electric field, is also generated, leading to electromagnetic field propagation. Our hybrid piezoelectric-magnetostrictive transformer can take an input electric voltage that may include modulation-signal over a carrier frequency and transmit via oscillating magnetic field or flux change. The prototype measurements reveal a magnetic dipole like near field, demonstrating its transmission capabilities. Furthermore, the developed prototype showed a 10 4 times higher efficiency over a small-circular loop of the same area, exhibiting its superiority over the class of traditional small antennas
SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
3D Gaussian Splatting has emerged as an alternative 3D representation for
novel view synthesis, benefiting from its high-quality rendering results and
real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have
ambiguous structures without any geometry constraints. This inherent issue in
3D-GS leads to a rough boundary when segmenting individual objects. To remedy
these problems, we propose SAGD, a conceptually simple yet effective
boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation
accuracy while preserving segmentation speed. Specifically, we introduce a
Gaussian Decomposition scheme, which ingeniously utilizes the special structure
of 3D Gaussian, finds out, and then decomposes the boundary Gaussians.
Moreover, to achieve fast interactive 3D segmentation, we introduce a novel
training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive
experiments demonstrate that our approach achieves high-quality 3D segmentation
without rough boundary issues, which can be easily applied to other scene
editing tasks
RbSn2(PO4)3, a NASICON-type phosphate
The title compound, rubidium ditin(IV) tris(phosphate), RbSn2(PO4)3, belongs to the NASICON-type family of phosphates and crystallizes in the space group R
. The structure is composed of PO4 tetrahedra (1 symmetry) and two slightly distorted SnO6 octahedra, both with 3. symmetry, which are interlinked through corner-sharing O atoms to form a 3
∞[Sn2(PO4)3]− framework. The Rb+ cations are located on threefold inversion axes in the voids of this framework and exhibit a coordination number of 12. The crystal studied was twinned by merohedry with a component ratio of 0.503:0.497
Woody plant encroachment of grassland and the reversibility of shrub dominance: Erosion, fire, and feedback processes
Many grass-dominated ecosystems in dryland regions have experienced increasing woody plant density and abundance during the past century. In many cases, this process has led to land degradation and declines in ecosystem functions. An example is the Chihuahuan Desert in the southwestern United States, which experienced different stages of shrub encroachment in the past 150 years. Among a wide variety of mechanisms to explain the grass–shrub transitions in this dryland system, soil erosion (both wind and water) and fire are particularly well studied. Here, we synthesize recent developments on the drivers and feedback in the process of shrub encroachment in the Chihuahuan Desert through the intercomparison of two Long Term Ecological Research (LTER) sites, namely Jornada and Sevilleta. Experimental and modeling studies support a conceptual framework, which underscores the important roles of erosion and fire in woody plant encroachment. Collectively, research at the Jornada LTER provided complementary, quantitative support to the well-known fertile-islands framework. Studies at the Sevilleta LTER expanded the framework, adding fire as a major disturbance to woody plants. Conceptual models derived from the synthesis represent the general understanding of shrub encroachment that emerged from research at these two sites, and can guide management interventions aimed at reducing or mitigating undesirable ecosystem state change in many other drylands worldwide.Temple University. College of Science and TechnologyEarth and Environmental Scienc
Landscape network approach to assess ecological impacts of road projects on biological conservation
- …
